ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA ELEKTROTECHNICKÁ

NÁVRH A VÝPOČET SKLÁDANÉHO VÝMĚNÍKU "PLATE & BAR"

BC. DOMINIK BUBEN

Рř

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

íjmení: B	uben
-----------	------

Jméno: Dominik

Osobní číslo: 411185

Fakulta/ústav: Fakulta elektrotechnická Zadávající katedra/ústav: Katedra měření

Studijní program: Inteligentní budovy

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Návrh a výpočet skládaného výměníku "plate & bar"

Název diplomové práce anglicky:

Design and calculation of "plate and bar" heat exchanger

Pokyny pro vypracování:

Na základě vypracovaných rešerší kriteriálních rovnic přestupu tepla a základního experimentálního měření výměníku s prázdným kanálem v Projektu 2, proveďte další sérii měření výměníků "plate & bar" s upravenou geometrií. V další sérii experimentálních měření zjistěte a popište pomocí funkční závislosti vliv jednotlivých komponentů výměníku. Mezi požadované vlivy patří typ využitého vlnovce a umístění vířiče uvnitř kanálu. Experimentální měření proveďte vždy při třech základních pracovních bodech rychlosti proudění na straně vody a na straně vzduchu. Získané hodnoty experimentálním měřením využijte pro vytvoření výpočetních vztahů pro návrh výměníku "plate&bar". Výsledné parametry etalonových výměníků porovnejte s hodnotami vypočtenými dle teoretických vztahů.

Seznam doporučené literatury:

[1] ŠESTÁK, Jiří a ŽITNÝ, Rudolf. Tepelné pochody II. 2. vydání. Praha. Vydavatelství ČVUT v Praze, 2006. 165 s. ISBN 8001034755

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jiří Brož, Ph.D., B&S Coolers a.s.

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Datum zadání diplomové práce: 30.09.2019

Termín odevzdání diplomové práce:

Platnost zadání diplomové práce: do konce zimního semestru 2020/2021

Ing. Jiří Brož, Ph.D. podpis vedoucí(ho) práce

podpis vedoucí(ho) ústavu/katedry

prof. Mgr. Petr Páta, Ph.D. podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání

Podpis studenta

Prohlášení

Prohlašuji, že jsem diplomovou práci s názvem: "Návrh a výpočet skládaného výměníku "plate & bar"" vypracoval samostatně pod vedením Ing. Jiřího Brože, Ph.D., s použitím literatury, uvedené na konci mé diplomové práce v seznamu použité literatury.

V Praze dne 15.05. 2020

Dominik Buben

Poděkování

Na prvním místě bych chtěl poděkovat mému vedoucímu diplomové práce panu Ing. Jiřímu Brožovi, Ph.D. za jeho velkorysost, vstřícnost a odborné vedení při řešení této práce. Dále bych chtěl poděkovat panu Petru Bohuslavovi, za neustálou podporu a motivaci při studiu, za čas určený ke studiu, který mi na úkor sebe a své firmy zařídil. Také bych chtěl poděkovat mým nejbližším, kteří mě v těžkých chvílích vždy vyslechli a snažili se být mou oporou. Největší poděkování zaslouží má rodina, kvůli které jsem před mnoha lety se studiem vysoké školy začínal.

Dominik Buben

Abstrakt

Cílem práce je navrhnout a popsat vztahy pro výpočet výměníku "plate & bar", které budou umožňovat určit geometrii výměníku na základě zadaných vstupních požadavků zákazníka. Na základě zpracovaných funkčních závislostí bude výrobce schopný navrhnout velikost výměníku vzhledem k požadovanému výkonu a tlakovým ztrátám ze zadaných vstupních teplot a průtoků na straně vody a na straně vzduchu. Práce je rozdělena do dvou základních částí, teorie a experimentálního měření. V první části je provedena rešerše základních vztahů dostupných z literatury, které popisují všeobecný výpočet a návrh křížoproudých výměníků. Obecná teorie výměníků je následně upravena tak, aby výpočty odpovídaly s co nejnižší odchylkou konstrukční geometrii výměníků "plate & bar". Experimentálním měřením simulujícím reálný provoz ve třech pracovních bodech etalonových výměníků byla získána data, která se následně využila pro návrh výpočetních vztahů. Na základě modifikovaných teoretických vztahů převzatých z literatury a naměřených hodnot parametrů etalonů, byly vytvořeny specifické funkční vztahy umožňující zpracování návrhu geometrie výměníku "plate & bar" ze zadaných vstupních a výstupních požadavků.

Klíčová slova: výměník, plate & bar, vlnovec, přestup tepla, kriteriální rovnice

Abstract

The aim of this work is to design and describe the relations for the calculation of the "plate & bar" heat exchanger, which will allow to determine the geometry of the exchanger based on the input requirements of the customer. Based on the processed functional dependencies, the manufacturer will be able to design the size of the exchanger with respect to the required output and pressure losses from the entered inlet temperatures and flow on the water side and on the air side. The thesis is divided into two parts theory and experimental measurement. The first part is a recherche of basic relations available from literature describing the calculation and design of cross-flow exchangers in general. The general theory of heat exchangers is subsequently adjusted so that the calculations correspond with the design geometry of the plate & bar exchangers with the lowest possible deviation. Experimental measurements simulating real operation at three working points of standard exchangers obtained data, which were subsequently used for the design of computational relations. On the basis of modified theoretical relations taken from literature and measured values of standard parameters, specific functional relations were created allowing processing of the design of the "plate & bar" exchanger geometry based on input and output requirements.

Keywords: heat exchanger, plate & bar, fin, heat transfer, criteria equations

1.	Ú	Ĵvod	t		3 -
2.	١	/ým	ěník	ky tepla	4-
	2.1		Rozc	dělení výměníků dle charakteru proudění	5 -
	2	2.1.1	•	Souproudé uspořádání	5 -
	2	2.1.2	•	Protiproudé uspořádání	5 -
	2	2.1.3	•	Křížové uspořádání	5 -
	2.2	•	Reku	uperační výměníky s křížovým uspořádáním	6 -
	2	2.2.1	•	Deskožebrový výměník "plate and bar"	6 -
	2	2.2.2	•	Tenkostěnný trubkový výměník	6 -
	2	2.2.3	•	Výměník ze žebrovaných trubek	7 -
	2	2.2.4	•	MPE trubkový výměník	7 -
	2.3	•	Рорі	is deskožebrového výměníku "plate & bar"	8 -
	2	2.3.1	•	VInovec	9 -
	2	2.3.2	•	Dynamopás	· 10 -
	2	2.3.3	•	Lišta	· 11 -
	2	2.3.4	•	Mezistěna	· 11 -
	2	2.3.5	•	Bočnice	· 12 -
	2	2.3.6	•	Vířič	· 12 -
	2.4		Cyklı	us výroby hliníkového výměníku	· 13 -
	2.5	•	Tech	nologie výroby hliníkového výměníku "plate & bar"	· 14 -
3.	k	Krite	riálr	ní rovnice přestupu tepla v minikanálech pro laminární a turbulentní oblast	15 -
	3.1		Přes	tup tepla	· 15 -
	3.2		Krite	eriální rovnice	· 15 -
	3	3.2.1	•	Nusseltovo kritérium	· 16 -
	3	3.2.2	•	Pecletovo kritérium	· 16 -
	3	3.2.3		Biotovo kritérium	· 16 -
	3	3.2.4	•	Prandtlovo kritérium	· 16 -
	3	3.2.5	•	Reynoldsovo kritérium	· 16 -
	3	3.2.6	•	Grashofovo kriterium	· 17 -
	3.3		Režii	my proudění reálných tekutin	· 17 -
	3	3.3.1	•	Laminární oblast proudění	· 17 -
	3	3.3.2	•	Přechodová oblast proudění	· 18 -
	3	3.3.3	•	Turbulentní oblast proudění	· 18 -
	3.4		Přes	tup tepla na straně vody	· 19 -

3.5.	Tlakov	vé ztráty	21 -
4. Int	enzifika	ace přestupu tepla pomocí statických směšovačů/vířičů a platnost jejich	
použití	•••••		22 -
4.1.	Vířiče	a statické směšovače	22 -
4.2.	Vliv ví	řiče na proudění a přestup tepla tekutiny	22 -
5. Kri	teriální	í rovnice přestupu tepla pro vlnovec	24 -
5.1.	Vliv tv	/aru vlnovce na přestup tepla	24 -
5.2.	Korela	ace pro výpočet součinitele přestupu tepla	24 -
5.3.	Popis	a kriteriální rovnice přestupu tepla vlnovce s prostřihem	25 -
5.4.	Korela	ace pro výpočet přestupu tepla na vlnovci	26 -
6. Ce	lkový p	rostup tepla, vliv tloušťky stěn kanálu	28 -
6.1.	Prostu	up tepla	28 -
6.2.	Součir	nitel přestupu tepla na straně vody	29 -
6.3.	Součir	nitel přestupu tepla na straně vzduchu	29 -
6.4.	Popis	celkového prostupu tepla	30 -
7. Za	dání pro	o výpočet a měření výměníku	31 -
7.1.	Vstup	ní veličiny	31 -
7.2.	Geom	etrické parametry	32 -
8. Me	etody v	ýpočtu pro návrh výměníku	34 -
8.1.	Obecr	ný postup návrhového výpočtu	34 -
8.2.	Metod	dy návrhu výměníků	34 -
8.3.	Středr	ní logaritmický teplotní spád (LMTD)	34 -
8.4.	Metod	da "ɛ-NTU"	35 -
8.5.	Teore	tický výpočet výměníku bez vířiče	37 -
8.5	.1. L	Jrčení součinitele přestupu tepla na straně vody	37 -
8.5	.2. L	Jrčení součinitele přestupu tepla na straně vzduchu	38 -
8.5	.3. V	/ýpočet celkového prostupu tepla	40 -
8.5	.4. V	/ýpočet výkonu výměníku pomocí ε-NTU metody	41 -
8.6.	Teore	tický výpočet výměníku s vířičem	43 -
8.6	i.1. l	Jrčení součinitele přestupu tepla na straně vody	43 -
8.6	i.2. L	Jrčení součinitele přestupu tepla na straně vzduchu $lpha a$	44 -
8.6	.3. V	/ýpočet celkového součinitele prostupu tepla k	45 -
8.6	.4. V	/ýpočet výkonu výměníku pomocí metody ε-NTU metody	45 -
9. Ex	perime	ntální měření	46 -
9.1.	Měřic	í trať	46 -
9.2.	Vstup	ní a výstupní teploty	48 -

9	9.3. Hmotnostní a objemový průtok tekutin			
9.4. Tlak na vstupu a výstupu		Tlak	na vstupu a výstupu	49 -
9	9.5. Fγ		kální vlastnosti pracovních látek a okolního prostředí	49 -
9	9.6. ľ		éení výkonu	49 -
9	.7.	Vyho	odnocení	50 -
9	.8.	Vyho	odnocení experimentálního měření	50 -
	9.8.1		Součinitele přestupu tepla a tepelné výkony	50 -
	9.8.2.			56 -
	9.8.3	3.	Statistika vyhodnocení dat	58 -
10.	10. Porovnání experimentálních a vypočtených dat			59 -
11.	Záv	ěr		64 -
12.	2. Seznam obrázků			
13.	. Seznam tabulek 68 -			
14.	- 70 -			
15	literatura			
13.				73-
16.	Prilona A 74 -			

1. Úvod

Výměníky "plate & bar" patří mezi rekuperační výměníky s křížovým uspořádáním. Sítí výměníku proudí tekutina, která svým průchodem ochlazuje vnější stranu teplosměnné plochy výměníku, uvnitř kterého proudí chlazená tekutina. Teplosměnná plocha má svou specifickou konstrukční geometrii, které je tvořena střídavě složenými vlnovci a kanály po celé své ploše. Postupným skládáním na sebe kolmých hranolů, vlnovců a plátovaných plechů vzniká velice efektivní a odolná konstrukce typická pro tento typ výměníku. Vzhledem ke své pevnosti, odolnosti a hmotnosti má tento typ výměníku široké využití. Nejčastěji se používají při chlazení motorů lokomotiv, šroubových kompresorů, transformátorů nebo v automobilovém průmyslu. Konstrukce "Plate and bar" má téměř neomezené možnosti při návrhu geometrie. Při návrhu výměníku je možné na základě požadovaného tepelného výkonu, přestupů tepla, tlakových ztrát volit různé tloušťky materiálů, typy konstrukce a rozměry jednotlivých komponentů.

Mezi základní komplikace při návrhu geometrie výměníků patří často omezené proudění chladicí tekutiny na straně vzduchu, což je nejčastěji způsobeno zakrytováním, případně malým zástavbovým prostorem. Omezený přístup přirozeného proudění chladicí tekutiny na straně vzduchu způsobený nedostatečným přístupem je doplňován ventilátorem, který potřebný průtok vzduchu zajistí. V případě projektování nového zařízení je kladen důraz na maximální efektivitu využití zástavbového prostoru společně s maximalizací tepelného výkonu dle zadaných parametrů, v ideálním případě s výkonovou rezervou výměníku.

Při spolupráci na realizaci nových projektů je pro výrobce výměníků v dnešní době nutnost mít vlastní výpočetní program, který umožní vypracovat kompletní návrh systému chlazení dle požadavků zákazníka. Každý výrobce výměníků má sestavený vlastní výpočetní systém založený na vlastní geometrii jednotlivých komponent a materiálů. V praxi není možné, aby dva výrobci využívali stejně navržený výpočet vzhledem k výše uvedeným skutečnostem. Problematiku výpočtu výměníků přenechávají často firmy externím dodavatelům, kteří ve svých zkušebnách testují produkty různými metodami s cílem poskytnout výrobci co nejpřesnější návrh výměníku. Tato externí měření jsou však finančně nákladná, časově náročná a ve výsledku často s vyšší odchylkou, vzhledem k množství typů výměníků na trhu.

Daleko vhodnější řešení pro výrobce je zpracování vlastního systému pro výpočet výměníků, založeného na odborné literatuře, podložené experimentálním měřením vlastní geometrie. Funkční závislosti jsou v takovém případě nejpřesnější a s malými odchylkami odpovídají požadované přesnosti výpočtu.

Dominik Buben

2. Výměníky tepla

Tepelné výměníky jsou zařízení, která jsou využívána k přenosu vnitřní tepelné energie mezi dvěma nebo více tekutinami o rozdílných teplotách. Uplatnění tepelných výměníku je velmi široké. Výměníky jsou v nejrůznějších podobách používány ve všech odvětvích průmyslu.

Základní rozdělení oblastí výměníku je na stranu vody a stranu vzduchu. Stranou vody rozumíme plochu, kterou smáčí proudicí chlazená tekutina uvnitř kanálů výměníku. Patří sem tedy vnitřní ústrojí kanálů a komory se vstupy (hrdla, šroubení) po stranách výměníku. Uvnitř kanálů proudí nejčastěji voda, olej nebo stlačený vzduch.

Za stranu vzduchu je považována vnější plocha výměníku, na níž proudí chladicí tekutina, nejčastěji vzduch. V této oblasti je dominantní vlnovec, který svojí geometrií zásadně ovlivňuje přestup tepla z povrchu výměníku do okolí. Za plochu strany vzduchu považujeme v návrhu i vnější povrch kanálů.

Při návrhu výměníku je pro výrobce důležité dbát na základní požadavky, mezi které patří především vysoká účinnost přenosu tepla určující z největší části tepelný výkon, nízké tlakové ztráty na straně vody a vzduchu ovlivňující návrh hnacího zařízení jako čerpadlo nebo ventilátor. Při návrhu výměníku je tedy důležité správně určit jednotlivé vlivy přestupu a vedení tepla, které ovlivňují samotné předání tepla z jedné tekutiny do druhé a následný odvod tepla z povrchu výměníku do okolí. Tlakové ztráty tak ovlivňují rychlost proudění tekutiny výměníkem což také ovlivňuje výsledný tepelný výkon. Výrobce musí dbát na správné zvolení geometrie výměníku vzhledem k provozním podmínkám v rámci životnosti a spolehlivosti. Důležité je dbát na správný návrh geometrie vzhledem k aplikaci využití výměníku, především kvůli tlakovému dimenzování. Všechny tyto požadavky jsou spojeny s výslednými rozměry výměníku, které jsou jednou z nejdůležitějších vlastností z důvodu často omezené zástavby stroje nebo zařízení.

Nelze splnit všechny tyto požadavky zároveň. Při návrhu výměníku je tedy nutné zvolit podstatné priority, které jsou vždy individuální vzhledem k povaze projektu. U zbývajících požadavků je nutné zvolit kompromisní řešení. Na prvním místě je bezpečnost provozu, která zajišťuje ochranu především lidské obsluhy, potažmo zabraňuje majetkovým ztrátám v případě poruchy. Současně s bezpečností provozu je také nutné dbát na spolehlivost, která zamezí častým nákladným odstávkám zařízení.

V rámci návrhu tepelného výměníku je také potřeba specifikovat teplonosné látky, která při nesprávném zvolení zásadně ovlivní správnou funkci výměníku a sníží tak jeho tepelný výkon. V zásadě je potřeba při výběru látky dbát na základní požadavky, mezi které patří především nízká agresivita při kontaktu s povrchem výměníku, nízká viskozita ovlivňující tlakové ztráty, vysoký součinitel tepelné vodivosti a přestupu tepla. Vzhledem k lidské obsluze je vhodný výběr zdravotně nezávadných tekutin.

2.1. Rozdělení výměníků dle charakteru proudění

Charakter proudění je určen na základě vzájemného směru proudění tekutin, rozlišujeme celkem tři základní typy uspořádání. V této práci je podrobně popsán princip křížového uspořádání, které využívají skládané výměníky "plate & bar".

2.1.1. Souproudé uspořádání

Oba proudy tekutin vstupují do výměníku ze stejné strany a v celém výměníku proudí souběžně. Hlavní nevýhodou tohoto výměníku je existence velkých teplotních rozdílů na vstupní části výměníku, což může mít v některých případech za následek vysoké tepelné namáhání teplosměnných stěn.

2.1.2. Protiproudé uspořádání

Tekutiny v tomto druhu výměníku proudí vzájemně v opačném směru. Hlavní výhodou oproti souproudému uspořádání je možnost dimenzování menšího výměníku současně s rovnoměrnějším rozložením teplot, což vede k menšímu tepelnému namáhání stěn kanálů. Ohřívané médium lze ohřát na vyšší teplotu, než je výstupní teplota ohřívacího média.

2.1.3. Křížové uspořádání

U křížového uspořádání proudí obě média ve směru kolmém na sebe. Největší výhodou tohoto uspořádání je intenzivnější přestup tepla než u předchozích dvou uspořádání. Toho uspořádání se využívá nejčastěji u trubkových nebo skládaných rekuperačních výměníků.

Obr. 1.: a) Souproudý průchod médií, b) Protiproudý průchod médi, c) Křížový průchod médií. [Nákres autor]

2.2. Rekuperační výměníky s křížovým uspořádáním

2.2.1. Deskožebrový výměník "plate and bar"

Jedná se o celohliníkové výměníky, vyráběné skládáním na sebe jednotlivých kolmých vrstev hranolů a vlnovců, které jsou od sebe odděleny mezistěnou a tím jsou vytvořeny kanály. V konečné fázi je takto vyrobená síť spojena tvrdým pájením ve vakuové peci a díky tomu má výměník vysokou odolnost vůči mechanickému a tepelnému namáhaní zaručující jeho dlouhodobou životnost. Tyto výměníky jsou vhodné pro použití při pracovních tlacích nad 500 kPa, vysokých teplotách, častých teplotních změnách. V průtokových dutinách, pro zvýšení efektivity chlazení a zvýšení mechanické stability výměníku, mohou být vložené vířiče. Vysoce legovaný hliník a tvrdé pájení ve vakuové peci propůjčují tomuto typu výměníku vysokou odolnost vůči mechanickému a tepelnému namáhaní.

Obr. 2.: Síť skládaného chladiče "plate & bar". [Foto autor]

2.2.2. Tenkostěnný trubkový výměník

Jedná se o celohliníkové výměníky vyráběné z tenkostěnných svařovaných trubek. Výhodou takto skládaných výměníků je nízká konstrukční hmotnost a lepší tepelný výkon. Tvrdým pájením ve vakuové peci vznikne odolná konstrukce vůči mechanickému a tepelnému namáhání zaručující dlouhodobou životnost. Použití tohoto systému je vhodné zejména pro chladiče vody, jako mezichladič a dochlazovač stlačeného vzduchu. Síť chladiče je tvořená pomocí vlnovců a svařovaných tenkostěnných trubek, které ústí do trubkovnice. Trubky jsou uloženy v párech. Tyto výměníky jsou charakteristické svou vysokou efektivitou tepelné výměny, nízkým vnitřním odporem, nízkou hmotností chladiče a jednoduchostí výroby.

Obr. 3.: Síť chladiče složeného z tenkostěnných trubek. [Foto autor]

2.2.3. Výměník ze žebrovaných trubek

Jedná se o technologii válcování samotného chladicího žebra na hliníkovou trubku. Výhodou těchto výměníků je extrémně vysoká životnost v rámci odolnosti vůči vibracím a mechanickým vlivům okolních podmínek, použitelnost v těch nejnáročnějších podmínkách, kde dochází k pravidelnému a silnému znečištění chladicí sítě, kterou je možné opakovaně čistit vysokotlakým vodním proudem bez poškození sítě chladiče. Chladicí část výměníku je složena z žebrovaných trubek, které ústí do trubkovnice, při čem jsou k ní přivařené. Technologické možnosti nabízejí použití různých průměrů žebrovaných trubek od 18 do 36 mm. Tato chladicí část výměníku je charakteristická vysokou mechanickou stabilitou, kterou je možné do extrémních podmínek zvýšit pomocí nerezové vložky žebrované trubky.

Obr. 4.: Síť chladiče složeného z žebrovaných trubek. [Foto autor]

2.2.4. MPE trubkový výměník

Jedná se o celohliníkové výměníky vyráběné skládáním hliníkových MPE trubek (Multi Port Extruded tubes), nazývaných také mikrokanálové trubky s lamelami. MPE trubkové výměníky dosahují vysoké efektivity přenosu tepla, a proto jsou ideální pro použití ve vysoce účinných výměnících tepla kompaktních rozměrů.

Obr. 5.: Síť chladiče složeného z MPE trubek. [Foto autor]

2.3. Popis deskožebrového výměníku "plate & bar"

Výměník "plate & bar" se skládá ze soustavy na sebe skládaných mezistěn, dynamopásů, lišt a vlnovců. Takto složené komponenty vytvoří základní teplosměnnou plochu označovanou jako síť výměníku. Velikost sítě určuje konkrétní počet vlnovců a kanálů, který závisí na požadované výšce výměníku. V rámci návrhu ovlivňující počet vlnovců a kanálů patří mezi základní požadavky tepelný výkon a tlaková ztráta výměníku.

Nejprve se tedy na základě zadání vstupních požadavků navrhnou rozměry jednotlivých komponentů dle požadovaného výkonu a tlakových ztrát na straně vody a vzduchu. Následně se hodnotí jednotlivé geometrické návrhy sítě. Výšku sítě určuje počet modulů výměníku, který je závislý na rozměrech jednotlivých komponent. Modul je definován jako sestava jednoho vlnovce a jednoho kanálu. V případě, že je výměník určen do provozu ve specifickém prostředí, je potřeba zvážit typy navržených komponent v rámci odolnosti a pevnosti při provozu nebo čištění.

U trubkových chladičů je kanál tvořen jednou celistvou trubkou. U výměníku "plate & bar" je kanál složený z více komponentů, které se přesně definovaným způsobem skládají na sebe, čímž je vytvořen kanál. Jednotlivé komponenty, ze kterých je složen výměník "plate & bar", jsou rozebrány v podkapitolách.

Obr. 6.: Řez výměníkem "plate & bar" [11]

2.3.1. Vlnovec

Vlnovec je samostatná komponenta, která svým specifickým tvarem rozšiřuje vnější teplosměnnou plochu výměníku. U "plate & bar" výměníků se využívá různých geometrií vlnovců. Vlnovec je popsán základními rozměry, které jsou výška F_H , rozteč F_P , tloušťka F_T . Výška vlny zásadně ovlivňuje celkový rozměr plochy a současně v menší míře tlakovou ztrátu na straně vzduchu. Rozteč vlny má vliv na tlakovou ztrátu na straně vzduchu několikanásobně větší. V rámci vyšší efektivity přestupu tepla z povrchu výměníku do okolí, se určité typy vlnovce navrhují s takzvaným prostřihem. Prostřižením vlny docílíme vzniku turbulentního proudění mezi jednotlivými vzduchovými tunely, což zapříčiní efektivnější přestup tepla z vlnovce. Vlnovec se vyrábí z tenkého plechu, který může být na povrchu plátovaný nebo neplátovaný. Základní parametr plechu pro výrobu vlnovce je tloušťka. Obecně se doporučuje co nejtenčí plech v závislosti na požadované pevnosti geometrie. V praxi se tedy nejčastěji volí tloušťka plechu 0,2 až 0,03 mm.

Obr. 7.: Profil vlnovce [3]

Obr. 8.: Typy konstrukcí vlnovců:

2.3.2. Dynamopás

Dynamopás je hliníkový pás o přesných rozměrech, který je při výrobě navíjen do cívky. Tloušťka pohybující se v rozmezí od 2 do 5 mm určuje výšku kanálu výměníku "plate & bar". Je popsán základními rozměry, které jsou výška d_H a šířka d_W . Při skládání se umísťuje na kraje mezistěny, čímž tvoří boční stěnu kanálu. V rámci návrhu výměníku "plate & bar" se přestup tepla přes dynamopás zanedbává vzhledem k malé ploše vůči ploše mezistěny a vlnovce.

Obr. 9.: Profil dynamopásu. [Foto autor]

2.3.3. Lišta

Lišta neboli kostka se využívá pro vyplnění místa mezi kanály na úrovni vlnovce. Tvoří tedy boční stěnu sítě výměníku. Při skládání je na lišty položena mezistěna a současně mezi lišty vložen vlnovec. Kraj vlnovce se připájí právě k liště, čímž získá požadovanou pevnost a správné rozložení. Je popsána základními rozměry, které jsou výška b_H , šířka b_W a délka b_L . V praxi se využívá velké množství rozměrů, které si definují sami výrobci. Výška lišty je vždy shodná s výškou vlnovce což vyplývá z podstaty skládané konstrukce.

Obr. 10.: Profil lišty. [Foto autor]

2.3.4. Mezistěna

Mezistěna je hliníkový plech, který má na svůj povrch naválcovanou vrstvu pájky. V rámci výměníku "plate & bar" tvoří vrchní a spodní stěnu kanálu. Tloušťka p_T mezistěny zásadně ovlivňuje přestup tepla z tekutiny na kanál a vedení přes stěnu kanálu na vlnovec, proto se typicky volí od 0,3 do 0,6 mm dle požadavku pevnosti sítě výměníku.

Obr. 11.: Profil mezistěny. [Foto autor]

Dominik Buben

2.3.5. Bočnice

Bočnice se nachází na samém kraji sítě na vrchní i spodní části výměníku. Hlavní funkcí je zpevnění celé konstrukce, využívá se také jako ochranný prvek nebo jako styčná plocha pro přivaření držáků a úchytů. Hlavním parametrem je tloušťka plátovaného plechu, kterou má oproti mezistěně několikanásobně větší. Typická tloušťka bočnice se pohybuje od 2 do 6 mm.

2.3.6. Vířič

Vířič slouží jako turbulizátor, který zapříčiní změnu proudění tekutiny uvnitř kanálu, a tím zvýší efektivitu přestupu tepla z tekutiny na stěnu kanálu. Každý výrobce má navržený specifický tvar vířiče, který má svými typickými prostřihy co nejefektivněji zaručit víření. Vkládá se tedy mezi dynamopásy dovnitř kanálu což znamená, že jeho výška je závislá právě na výšce použitého dynamopásu. Při návrhu výměníku s větší hloubkou sítě se využívá jako nosný bod uvnitř kanálu, díky kterému se kanál nebortí.

Obr. 12.: Profil vířiče. [Foto autor]

2.4. Cyklus výroby hliníkového výměníku

Obr. 13.: Výrobní cyklus výměníku "plate & bar" [12]

DP-IB-2020

2.5. Technologie výroby hliníkového výměníku "plate & bar"

Skládání probíhá z materiálů na jejichž povrch je buď technologicky nanesen plát nebo je povrch materiálu čistý, tudíž bez plátu. Jako plát je využívána pájka, díky které dojde ke spojení materiálů ve vakuové peci. Tato úprava se realizuje přímo ve válcovně hliníku s tím, že se vždy definuje dle normy množství a typ pájky. Při skládání chladiče je nutné dodržet vždy postup, kdy pouze jedna strana ze dvou spojených obsahuje pájku, druhá bez pájky tak, aby došlu ke spojení materiálu ve vakuové peci. Při skládání se začíná bočnicí což je silnější plech o tloušťce 3 nebo 6 mm. Bočnice drží základní tvar chladiče a přenáší velkou část tlaku vyvíjeného na výměník. Na bočnici se přikládá vlnovec, který má hlavní funkci přenosu tepla z povrchu výměníku do prostoru.

Vlnovec je vyroben na lisovacím zařízení, který z klasického rovného plechu stlačením a ohnutím vytvoří v požadované rozteči vlnu. Jednotlivé parametry vlnovce je možné měnit v rámci možností stroje. Lze nastavit výšku vlnovce F_H dle nabízených možností, která se pohybuje od 6 do 12 mm, dalším možným nastavovaným parametrem je rozteč vlny F_P . Rozteč je vzdálenost vrcholů dvou sousedních vln. Na vlnovec se postupně umístí plech o tloušťce p_T , který slouží jako spodní část kanálu. Používá se plech o tloušťce 0,2 až 1 mm dle požadované pevnosti kanálu závislé na tlaku uvnitř sytému výměníku. Tloušťka stěny kanálu zcela zásadně ovlivňuje prostup tepla ze strany vody na stranu vzduchu. Na plech se dále položí z každé strany dynamopás, který vytvoří požadovanou výšku kanálu. Na dynamopás se položí plech, který uzavře kanál pro chlazené médium. Na plech se položí vlnovec a proces se opakuje až do požadované výšky sítě výměníku. Na konci se opět končí vyztuženou bočnicí.

3. Kriteriální rovnice přestupu tepla v minikanálech pro laminární a turbulentní oblast

3.1. Přestup tepla

Přestupem tepla je u výměníku označeno sdílení tepla prouděním probíhajícím v tekutinách, nejčastěji se jedná o proudění nucené, které je vyvoláno čerpadlem, ventilátorem nebo přirozeným prouděním vzduchu. Vlivem teplotního rozdílu proudicí tekutiny uvnitř kanálu a stěny kanálu výměníku dochází k přestupu tepla. Směr přestupu tepla je určen vždy z místa s vyšší teplotou k místu s teplotou nižší. U výměníků, které jsou využívány jako chladiče se prouděním chlazené tekutiny uvnitř systému ohřívá stěna kanálu díky čemuž klesá teplota proudicí tekutiny. V praxi je teoretický výpočet součinitele přestupu tepla možný pouze v jednoduchých případech za předpokladu, že se termokinetické veličiny nemění s teplotou. Při návrhu a výpočtu výměníků se tedy využívá matematicko-experimentálních metod, které fungují na principu změření součinitele přestupu tepla pro jeden konkrétní případ a pomocí teorie podobnosti je možné přenést naměřené výsledky na geometricky, hydrodynamicky a termokinetický podobné děje. Mezi termokinetické veličiny tekutiny měnící se s teplotou patří měrná hmotnost ρ , kinematická viskozita v, měrná teplená kapacita c_P za stálého tlaku a součinitel tepelné vodivosti λ .

3.2. Kriteriální rovnice

Analytický popis přenosu tepla je u většiny praktických úloh nemožný, proto se nejčastěji využívají experimentální výsledky a metody teorie podobnosti. Kritéria podobnosti jsou bezrozměrná čísla, která udávají vliv několika charakteristických veličin na daný proces. Kritéria podobnosti charakterizují základní podobnosti geometrické, hydrodynamické a termokinetické.

Geometrická podobnost vyjadřuje podobnost tvaru teplosměnné plochy výměníku. Kritérium je tvořeno poměrem charakteristických rozměrů pro danou teplosměnnou plochu. Pro válcovou a kulovou plochu je charakteristický rozměr průměr D. Pro rovinnou plochu je charakteristický rozměr spadající do vektoru rychlosti proudění. Hydrodynamická podobnost vyjadřuje podobnost volného a nuceného proudění tekutin. Kritérium podobnosti vychází z pohybové rovnice proudění vazké nestlačitelné tekutiny ve směru gravitačního zrychlení. Termokinetická podobnost vyjadřuje podobnosti vychází z Fourierovy rovnice upravené pro přenos tepla v proudicí tekutině společně s rovnicemi vyjadřujícími rovnost tepelných toků sdílených prouděním a vedením v tekutině.

3.2.1. Nusseltovo kritérium

Udává poměr mezi přestupem a vedením tepla v klidné vrstvě tekutiny o tepelné vodivosti λ na povrchu stěny. Při Nu = 1 je přestup tepla identický s vedením tepla touto vrstvou.

$$Nu = \frac{\alpha L}{\lambda} = \frac{\alpha}{\lambda/L} \tag{1}$$

3.2.2. Pecletovo kritérium

Je kombinací dvou určujících kriterií Re a Pr. Udává poměr hustoty tepelné kapacity proudu tekutiny a tepelný tok vedením vrstvou tekutiny o tloušťce L. Porovnává přenos tepla prouděním a vedením a je určujícím při nuceném proudění.

$$Pe = Re.Pr = \frac{c.L}{v} \frac{v}{a} = \frac{c.\rho.c_p}{\lambda/L}$$
(2)

3.2.3. Biotovo kritérium

Srovnává přestup tepla v tekutině s vedením tepla u povrchu tuhého tělesa.

$$Bi = \frac{\alpha}{\lambda_s/L} \tag{3}$$

3.2.4. Prandtlovo kritérium

Srovnává dvě molekulární transportní veličiny, kinematickou viskozitu a teplotní vodivost. K přenosu hybnosti třením v proudicí tekutině dochází v důsledku gradientu rychlosti, k přenosu tepla gradientem teplot.

$$Pr = \frac{v}{a} = \frac{c_{p.\mu}}{\lambda} \tag{4}$$

3.2.5. Reynoldsovo kritérium

Je určujícím kritériem pro nucené proudění tekutiny a vyjadřuje podobnost setrvačných sil místních a sil třecích v proudicí tekutině.

$$Re = \frac{v.l.\delta}{\eta} = \frac{v.l}{v}$$
(5)

3.2.6. Grashofovo kriterium

Je určujícím kritériem pro volné proudění tekutiny a vyjadřuje podobnost vztlakových, setrvačných a třecích sil v proudicí tekutině.

$$Gr = \frac{g.l^3}{\nu^2} \cdot \beta \cdot \Delta t \tag{6}$$

3.3. Režimy proudění reálných tekutin

Proudění reálných tekutin se dělí na režim laminární, přechodový a turbulentní. Režim proudění ovlivňuje rychlost proudění, fyzikální vlastnosti proudicí tekutiny a geometrie výměníku, v níž tekutina proudí. Pro rozlišování těchto tří režimů je používáno bezrozměrné Reynoldsovo číslo Re. Následující rozdělení proudění podle Reynoldsova čísla je uvedeno pro proudění v potrubí kruhového průřezu, kde charakteristický rozměr L odpovídá průměru potrubí. Pro proudění v nekruhových potrubích se jako charakteristický rozměr používá tzv. hydraulický průměr D_H.

3.3.1. Laminární oblast proudění

Proudění, při kterém nedochází k mísení tekutiny mezi jednotlivými vrstvami se považuje za laminární. Nastává při malých rychlostech proudění tekutiny. Třecí síly při tomto proudění převyšují setrvačné, částice tekutiny se pohybují v rovnoběžných vrstvách, které se po sobě navzájem posouvají. Pokud by za tohoto stavu bylo uměle vyvoláno, turbulentní proudění, nebude schopné tento režim udržet a proudění se vrátí zpět do svého stabilního stavu, do režimu laminárního. Mezní hodnotou pro toto proudění se nazývá kritické Reynoldsovo číslo ReKR

Dle [5] je uveden výpočet koeficientu přestupu tepla při laminárním proudění v trubce, ve které není v důsledku malé hodnoty poměru délky trubky k jejímu průměru L/d stabilizován rychlostní ani teplotní profil rovnici

$$Nu = 1,86 \left(Pe.\frac{d}{L} \right)^{1/3} (\eta/\eta_w)^{0,14}$$
(7)

Podle autorů platí rovnice pro L/d > 1; 13 < Re < 2030; 0,0044 < η/η_w < 10; 0,5 < Pr < 1,7 . 10²

L je délka trubky, d její průměr, viskozita tekutiny η při její střední teplotě a η_w viskozita při teplotě stěny trubky. Rovnice byla původně vyvinuta pro krátké trubky, ale platí s přijatelnou přesností i pro trubky relativně dlouhé. V tomto oboru proměnných lze očekávat chybu v určení koeficientu přestupu tepla ±25 %. Pro stabilizovaný rychlostní profil při L/d > 50 a Re < 2300 je vhodnější použít rovnici odvozenou Hausenem [1] na základě Graetzova teoretického vztahu

$$Nu = \left[3,65 + \frac{0,0668 \, Pe \, .d/L}{1 + 0,04 (Pe.d/L)^{2/3}}\right] \left(\frac{\eta}{\eta_w}\right)^{0,14} \tag{8}$$

Poměr η/η_w ve stejném rozsahu, Pr také ve stejném rozsahu; Pe . d/L > 100. V tomto vztahu je chyba určení Nu asi ±25 % což je stejně jako v předchozím vztahu, avšak jeho hlavní výhoda je fakt, že se Nu neblíží nule při L/d => ∞

3.3.2. Přechodová oblast proudění

Proudění se v této oblasti Reynoldsových čísel může vyskytovat jak v režimu laminárním, tak v turbulentním. Pro zajištění laminárního proudění ve vyšších Re se instaluje na vstupní otvor potrubí jemné síto, které na vstupu eliminuje vznik vírů. V opačném případě, při nevhodně tvarovaném vstupním otvoru, je možné dosáhnout turbulentního proudění již těsně nad hranicí Re_{Kr} v určitém rozmezí Re se může vyskytovat oblast, kde dochází ke střídání obou proudění. Při zvyšování Re se v této oblasti zvětšuje podíl turbulentního proudění, dokud laminární proudění zcela nezanikne. Pro přechodnou oblast proudění 2300 < Re < 104 je v literatuře uveden Hausenův vztah [1]

$$Nu = 0.116 \left(Re^{2/3} - 125 \right) Pr^{1/3} \left[1 + (d/L)^{2/3} \right] (\eta/\eta_w)^{0.14}$$
(9)

který lze použít pokud 0,5 < Pr < 5 . 10^2 ; 4 . $10^{-3} < (\eta/\eta_w) < 14$; L/d > 1

Nepodařilo se najít údaje, které by umožnily rozumný odhad chyby rovnice. Vztah navazuje na výsledky platné pro laminární a turbulentní oblast.

3.3.3. Turbulentní oblast proudění

Překročí-li Reynoldsovo číslo hodnotu 10⁵, proudění je turbulentní. Setrvačné síly již zcela převládají nad silami třecími a proudění je složeno ze soustavy stochastických vírů, na jejichž stavbě se podílejí molární částice. Rychlostní profil turbulentního proudění je oproti laminárnímu ve střední části vyrovnanější a při stěnách naopak strmější. Tato změna tvaru rychlostního profilu je způsobena mísením tekutiny mezi jednotlivými vrstvami. Velký spád rychlostního profilu u stěny znamená

přítomnost velkých tečných napětí v těchto místech, které mají za následek pokles tlaku Δp. K výpočtu koeficientu přestupu tepla při turbulentním proudění v trubce se využívá Dittusova-Boelterova rovnice

$$Nu = 0.023. Re^{0.8}. Pr^{0.4}$$
(10)

Platí pro 0,6 < Pr < 1,2 . 10^2 ; L/d > 50; 10^4 < Re <2 . 10^6

Hodnoty vypočtené přes výše uvedenou rovnici mají chybu ±10 % v úzké oblasti 1,2 < Pr < 1,4. Mimo tuto oblast se pohybuje chyba kolem ±20 %. Podstatně přesnější je rovnice od Petukhova [13]

$$Nu = \frac{(f/8) . Re . Pr}{1,07+12,7\sqrt{f/8}(Pr^{2/3}-1)}$$
(11)

kde

$$f = [1,82\log(Re) - 1,64]^{-2}$$
(12)

V rozsahu 104 < Re < 5.106; 0,5 < Pr < 200 se odchyluje od pokusných dat o \pm 6 %, což je v mezích experimentální chyby velmi kvalitní měření.

3.4. Přestup tepla na straně vody

Přestup tepla z tekutiny proudicí v kanálu výměníku je popsán kriteriální rovnicí

$$Nu = \frac{\alpha L}{\lambda} \tag{13}$$

kde pro výpočet přestupu tepla z tekutiny na stěnu kanálu α_{water} dosadíme rovnici popisující vztah dle Hausenovy korelace [1] pro kanál tvořený trubkou s kruhovým průměrem

$$Nu = \frac{\alpha.D}{\lambda} = 3,66 + \frac{0,0668.Gz}{1+0,04.Gz^{2/3}}$$
(14)

Tento vztah je platný při laminárním proudění s Re < 2300.

V případě výměníku "plate & bar" se jedná o kanál ve tvaru obdélníku, proto je potřeba výše uvedený vztah modifikovat pro správný hydraulický průměr. Hydraulický průměr pro obdélníkový kanál je

$$D_{H_ch} = \frac{4S}{o} = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b}$$
(15)

kde S je plocha kanálu, o je obvod kanálu, a je šířka kanálu, b je výška kanálu.

Pro typické nekruhové průřezy jsou v tabulce 1.2. uvedeny asymptotické hodnoty Nu pro plně vyvinutý laminární tok v kanálu dle [2]

		Asymptotická hodno	ota Nusseltova čísla
	b/a	$T_s = konst$	$\dot{\mathbf{q}_{s}} = \mathbf{konst}$
	1	2,98	3,61
	2	3,39	4,12
	3	3,96	4,79
b	4	4,44	5,33
	6	5,14	6,05
а	8	5,60	4,69
	10	6,82	5,21
	~	7,54	8,24

Tab. 1.: Asymptotické hodnoty Nusseltova čísla pro obdélníkový profil kanálu [5]

V případě měřeného výměníku plate & bar se jedná o kanál obdélníkového průřezu s poměrem stran 1/10.

Vztah popisující laminární proudění tekutiny v obdélníkovém kanálu s poměrem stran 1/10 je tedy

$$Nu = \frac{\alpha.D}{\lambda} = 6,82 + \frac{0,0668.Gz}{1+0,04.Gz^{2/3}}$$
(16)

Graetzovo číslo je určeno na základě vztahu

$$Gz = \frac{Re.Pr}{L_{ch}/D_{H_ch}}$$
(17)

Reynoldsovo číslo je určeno na základě rychlosti proudění tekutiny uvnitř kanálu, hydraulického průměru obdélníkového kanálu a kinematické viskozity tekutiny

$$Re_w = \frac{u_w D_H}{v}$$
(18)
- 20 -

Výsledný součinitel přestupu tepla z tekutiny na stěnu kanálu α_w je roven

$$\alpha_w = \frac{Nu.\lambda_w}{D_{H_ch}} \tag{19}$$

3.5. Tlakové ztráty

Vlivem tření v kapalině dochází k poklesu tlaku, který pak musí být kompenzován čerpadlem pro udržení požadovaného průtoku tekutiny. Tímto se samozřejmě zvyšují finanční náklady na provoz výměníku. Pokles tlaku závisí na délce kanálu, na jejich průměru, na drsnosti stěn, na rychlosti proudu, na typu proudění, na hustotě a viskozitě tekutiny. V neposlední řadě závisí na přítomnosti vířičů či nosných částí výměníku. Ze znalosti tlakové ztráty je vyjádřen příkon, potřebný k udržení potřebného průtoku vztahem

$$P = \frac{\dot{m} \Delta p}{\eta \rho} \tag{20}$$

kde P je potřebný příkon, Δp tlaková ztráta, ρ hustota tekutiny a η účinnost čerpadla nebo ventilátoru.

4. Intenzifikace přestupu tepla pomocí statických směšovačů/vířičů a platnost jejich použití

4.1. Vířiče a statické směšovače

Ke zvýšení součinitele prostupu tepla mohou vést v zásadě 3 základní možnosti. První možností je zvětšení povrchu teplosměnné plochy vhodným žebrováním, především na straně s malou hodnotou součinitele přestupu tepla α .

Druhou možností je úprava povrchu umělým zdrsněním, drážkováním nebo vroubkováním. To má význam především v oblasti turbulentního proudění. Strojně obráběné drážkování nebo ještě lépe umělá "písková" drsnost povrchu jsou u jednofázového proudění nejúčinnější v oblasti vývoje turbulence. Velký vliv mají úpravy povrchu na intenzifikaci bublinkového varu a na zvýšení kritického tepelného toku.

Třetí varianta se týká použití vestaveb kanálu, mezi které řadíme statické směšovače, zkroucené pásky, drátěné vložky, které mohou fungovat jako žebra nebo vířiče. Vložením žebra do kanálu se zvyšuje teplosměnná plocha.

Obr. 14.: Profil vířiče. [Foto autor]

4.2. Vliv vířiče na proudění a přestup tepla tekutiny

Vířiče vyvolávají sekundární proudění a tím zvyšují součinitel přestupu tepla α. Dle literatury [4], která popisuje vliv vířičů na přestupy tepla v trubce, která je po celé délce L zaplněna vířiči platí při laminárním režimu proudění (Re <2000) vztah
Dominik Buben

$$Nu = 3,66 + 3,89 \ Gz^{\frac{1}{3}} \tag{21}$$

Což pro dostatečně velké hodnoty Graetzova čísla znamená cca 2,3násobné zvýšení hodnoty α . Na základě Tab. 1 je pro obdélníkový profil kanálu vztah modifikován na

$$Nu = 6,82 + 3,89 \, Gz^{\frac{1}{3}} \tag{22}$$

Při turbulentním proudění tekutiny je dle [3] korelace

$$Nu = 0,075 \ Re^{0,8}. \ Pr^{0,4} \tag{23}$$

což znamená cca 3,3násobné zvýšení α vzhledem k prázdné trubce.

Nevýhoda všech výše uvedených variant zvýšení součinitele přestupu tepla je vykoupena mnohokrát větším zvýšením tlakových ztrát. Dle [6] se jedná 4násobné zvýšení součinitele přestupu tepla vyvolané umělým zdrsněním povrchu způsobí turbulencí 50násobné zvýšení tlakové ztráty. U směšovačů se v laminárním režimu pohybuje součinitel třecích ztrát v rozmezí λ_f = 295 až 450/Re, což představuje 4,6 až 7krát větší tlakovou ztrátu než v prázdné trubce (λ_f = 64/Re), a pro lamelové směšovače udává [7] korelaci λ_f = 5600/Re, což znamená zvýšení tlakové ztráty téměř o dva řády. Zisk v podobě zvýšení součinitele přestupu tepla je přitom stále jen o něco více než dvojnásobný.

Při návrhu výměníku je tedy nutné zvážit, zda-li je možné výrazně zvýšit tlakovou ztrátu uvnitř kanálu vložením vířičů vzhledem k zadaným vlastnostem čerpadla, případně ventilátoru.

V případě návrhu výměníků s větší dimenzí jádra (nejčastěji hloubky), mohou sloužit vířiče jako podpůrný pevnostní element celého kanálu. Hluboký kanál bez vířičů či podpůrných dynamopásů má tendenci se při pájení vložky deformovat. Proto je při výrobě rozměrově větších výměníků "plate & bar" vhodné navrhovat konstrukci obsahující vířiče i na úkor potřeby výkonnějšího hnacího zařízení.

Každý výrobce má uzpůsobenou svou geometrii vířiče vzhledem k hlavici lisu, který samotné tvarování vířiče z plechu provádí. V této práci jsou provedena měření výměníků obsahující specifický tvar a vliv vířiče na proudění tekutiny uvnitř kanálů. Výsledky měření jsou proto specifické právě k měřeným výměníkům a nedají se aplikovat na jiné druhy a typy vířičů používající se u jiných výrobců. [1] DP-IB-2020

5. Kriteriální rovnice přestupu tepla pro vlnovec

5.1. Vliv tvaru vlnovce na přestup tepla

Zásadní vliv při přestupu tepla z vlnovce do proudicího vzduchu má geometrie vlny. Mezi základní typy vlnovců patří hranatý vlnovec, trojúhelníkový vlnovec, podélně vlnitý vlnovec a soustava offsetových vlnovců. Tyto základní typy se liší tvarem žebra, u kterého lze měnit standardně jeho výšku a rozteč závisející na možnostech výrobního zařízení. Pro zvětšení teplosměnné plochy se v návrhovém procesu volí vlnovec o vyšší výšce řádově 10 až 15 mm. V rámci snížení tlakové ztráty výměníku je potřeba navrhnout rozteč vlny. Rozteč vlny je vzdálenost dvou sousedních vrcholů vlnovce a určuje hustotu hlavní teplosměnné plochy výměníku. Při větší rozteči vlnovce dochází při průchodu vzduchu sítí k nižším turbulencím což vede k nižší tlakové ztrátě na straně vzduchu výměníku.

Každý z výše uvedených typů vlnovce může mít v závislosti na výrobním zařízení vytvořený prostřih. Prostřih slouží především jako míchání proudů mezi jednotlivými vzduchovými kanály tvořené jednotlivými vlnami. V důsledku prostřižených stěn dochází k vzájemnému narážení částic vzduchu což vede k turbulenci v jednotlivých vzduchových kanálech. Vzniklá turbulence zvýší efektivitu přestupu tepla z povrchu vlnovce do proudicího vzduchu, a tím i výkon samotného výměníku.

5.2. Korelace pro výpočet součinitele přestupu tepla

Pro výpočet součinitele přestupu tepla z vlnovce do okolního prostředí většina autorů používá experimentů, při kterých vyjadřovali kriteriální rovnice přes korelace a popis jednotlivých geometrií vlnovců Colburnův j-faktor. Obdobně jako při výpočtu koeficientu přestupu tepla se při kalkulaci tlakových ztrát využívá Fanningova třecího faktoru f. Analogie Colburnova j-faktoru spojuje součinitele tření a součinitele přenosu tepla.

Ze znalosti Colburnova j-faktoru lze vypočítat Nusseltovo číslo

$$j = \frac{Nu}{Pr^{1/3}.Re} => Nu = j.Pr^{1/3}.Re$$
 (24)

Následně z Nusseltova čísla vyjádřit součinitel přestupu tepla

$$Nu = \frac{\alpha_{a}.L_{char}}{\lambda_{a}} \Longrightarrow \alpha_{a} = \frac{Nu.\lambda_{a}}{L_{char}}$$
(25)

kde *j* je hodnota Colburnovo faktoru reprezentující tvar a vliv vlnovce při daném proudění vzduchu, kde α _a je součinitel přestupu tepla na straně vzduchu, λ_a je součinitel tepelné vodivosti vzduchu při dané teplotě a L_{char} je charakteristický rozměr, ke kterému se výpočet vztahuje.

5.3. Popis a kriteriální rovnice přestupu tepla vlnovce s prostřihem

Prostřihy uvnitř vlny zapříčiní víření proudění vzduchu jádrem výměníku tím, že vzduch se nedostává do laminárního proudění v sítí, ale díky mezerám prostupuje mezi sousední kanály, což způsobí vznik turbulentního proudění a zefektivnění přenosu tepla z povrchu. Nevýhoda tohoto typu vlnovce je v pevnosti konstrukce. Díky prostřiženým částem plechu je vlnovec oslaben, a tím klesá jeho pevnost a odolnost vůči vnějším vlivům. Další komplikace nastává při provozu zařízení v prašném prostředí. Větší prachové částice mají tendenci k zachytávání se uvnitř prostřihů, což má za následek snížení intenzity turbulentního proudění kolem vlnovce, a tím snížení efektivity přestupu tepla z povrchu výměníku. Největší výhodou vlnovce s prostřihem je jednoduchost výroby s tím spojené minimální náklady. Plech je nejdříve prostřižen střižným nástrojem a následně je ohnut a stlačen do požadovaného vlnového tvaru. Tento systém tvarování je jednoduchý a rychlý.

Pro výpočet teoretického součinitele přestupu tepla z vlnovce do vzduchu uvádí literatura přepočet pomocí Colburnova j-faktoru společně s popisem kriteriálních rovnic pro daný typ vlnovce s prostřihem.

Obr. 15.: a) Pohled v řezu na vlnovec s prostřihem, b) Čelní pohled na vlnovec s prostřihem. [Nákres autor]

Obr. 16.: Detail prostřihu ve vlnovci [2]

Obr. 17.: Detail vlnovce s prostřihem. [Foto autor]

5.4. Korelace pro výpočet přestupu tepla na vlnovci

5.4.1. Chang & Wang

Jedná se o studii s nejobsáhlejšími změřenými typy výměníků, které měly vlnovce s prostřihem. Autoři zpracovali výsledky měření z 91 typů výměníků. Provedli také výpočet výkonů pomocí LTMD i ε-NTU metody. Korelace vycházela především z práce [8], [9] Výsledná korelace je

$$j = Re_{L_p}^{-0.49} \cdot \left(\frac{L_a}{90}\right)^{0.27} \cdot \left(\frac{F_s}{L_p}\right)^{-0.14} \cdot \left(\frac{F_h}{L_p}\right)^{-0.29} \cdot \left(\frac{t_d}{L_p}\right)^{-0.23} \cdot \left(\frac{L_l}{L_p}\right)^{0.68} \cdot \left(\frac{t_s}{L_p}\right)^{-0.28} \cdot \left(\frac{F_t}{L_p}\right)^{-0.05}$$
(26)

kde Re_{L_p} je Reynoldsovo číslo vztažené k úhlu prostřihu vlnovce, L_a je úhel prostřihu vlnovce, F_d je hloubka vlnovce, L_p je rozteč prostřihu na vlnovci, F_h je výška vlnovce, t_d je hloubka kanálu, L_l je výška prostřihu, t_s je výška modulu (vlnovec + kanál), F_t je tloušťka vlnovce

5.4.2. Kim & Bullard

V této studii navrhli korelaci na základě experimentálního měření více než 30ti výměníků tepla, které měly vlnovce s prostřihem. Výkon vypočítali na základě ε-NTU metody pro výměníky s křížovým proudem s oddělenými médii.

$$j = Re_{L_p}^{-0,487} \cdot \left(\frac{L_a}{90}\right)^{0,257} \cdot \left(\frac{F_s}{L_p}\right)^{-0,13} \cdot \left(\frac{F_h}{L_p}\right)^{-0,29} \cdot \left(\frac{F_d}{L_p}\right)^{-0,235} \cdot \left(\frac{L_l}{L_p}\right)^{0,68} \cdot \left(\frac{t_s}{L_p}\right)^{-0,279} \cdot \left(\frac{F_t}{L_p}\right)^{-0,05}$$
(27)

kde Re_{L_p} je Reynoldsovo číslo vztažené k úhlu prostřihu vlnovce, L_a je úhel prostřihu vlnovce, F_d je hloubka vlnovce, L_p je rozteč prostřihu na vlnovci, F_h je výška vlnovce, t_d je hloubka kanálu, L_l je výška prostřihu, t_s je výška modulu (vlnovec + kanál), F_t je tloušťka vlnovce

$$Re_{L_P} = \frac{u_a \cdot L_p}{v_a} \tag{28}$$

Charakteristickým číslem při výpočtu Re_{L_P} je rozteč jednotlivých prostřihů vlnovce.

6. Celkový prostup tepla, vliv tloušťky stěn kanálu

6.1. Prostup tepla

Prostup tepla stěnou je současně přestup tepla z teplejší tekutiny do stěny, vedení tepla stěnou a přestup tepla ze stěny do chladnější tekutiny. Při prostupu tepla stěnou je tepelný tok vyjádřen v závislosti na teplotním rozdílu mezi teplejší a chladnější tekutinou. Celkový prostup tepla lze charakterizovat součinitelem prostupu tepla k, který přímo ovlivňuje výkon výměníku. Ve většině případů je cílem maximalizovat výkon výměníku což vede k upravování geometrických parametrů jednotlivých komponentů.

Tepelná vodivost všech komponentů, ze kterých je složen výměník musí být co největší, což je zabezpečeno výběrem materiálu s vysokou tepelnou vodivostí jako je hliník nebo měď. Teplosměnná plocha by měla být co největší, což má vliv na počet a velikost sestavy kanálů a vlnovců. Přidáním nebo ubráním jednoho kanálu a vlnovce můžeme zásadně ovlivnit výkon výměníku je možné ovlivnit také změnou rychlosti tekutiny, čímž se zvýší hodnota koeficientu přestupu tepla. Koeficient prostupu tepla je převrácenou hodnotou součtu dílčích tepelných odporů.

$$k = \frac{1}{R_1 + R_2 + R_3} \qquad [W. m^{-2}. K^{-1}] \tag{29}$$

Tepelný odpor R₁ je převrácenou hodnotou součinitele přestupu tepla α_w na straně proudicí kapaliny uvnitř kanálu. Při laminárním proudění je ovlivněn především tloušťkou mezní vrstvy odpovídající vztahu $\alpha_w \sim \lambda_w / p_T$.

Tepelný odpor R₂ reprezentuje tepelný odpor stěny kanálu, který je přímo úměrný tloušťce stěny p_T a nepřímo úměrný tepelné vodivosti materiálu stěny λ_{Al} . Tepelný odpor R₃ je převrácenou hodnotou součinitele přestupu tepla α_a vynásobeného účinností žebra η na straně vzduchu.

6.2. Součinitel přestupu tepla na straně vody

Součinitel přestupu tepla na straně vody charakterizuje předání tepla z proudicí tekutiny uvnitř kanálu na jeho stěnu. Při ustáleném laminárním proudění prochází výměníkem tekutina, která má ve středu kanálu nejvyšší teplotu. Okolo stěn kanálu je teplota nižší v důsledku předávání tepla stěně. Součinitel přestupu tepla je převrácenou hodnotou tepelného odporu při přestupu tepla, který udává míru odporu proti pronikání tepla z tekutiny na stěnu kanálu.

$$R_{\alpha_w} = \frac{1}{\alpha_w} \qquad [m^2. K. W^{-1}]$$
 (30)

Tento obecný vztah pro tepelný odpor při přestupu tepla platí v případě, že je neuvažujeme rozšířenou plochu o vlnovec. Pro celkový popis tepelného odporu při přestupu tepla z tekutiny na kanál, který je rozšířený o plochu vlnovce je potřeba vyjádřit poměrem vnitřní a vnější plochy. Za celkovou vnější plochu S_{Tout} považujeme povrch vlnovců společně s vnějšími povrchy kanálů. Vnitřní plocha S_{Tin} odpovídá povrchu, který je smáčený kapalinou uvnitř kanálu. Tepelný odpor při přestupu tepla z tekutina na stěnu kanálu je tedy

$$R_{\alpha_W} = \frac{S_{Tout}}{S_{Tin} \cdot \alpha_W} \quad [m^2 \cdot K \cdot W^{-1}]$$
(31)

6.3. Součinitel přestupu tepla na straně vzduchu

Součinitel přestupu tepla na straně vzduchu charakterizuje předání tepla z povrchu kanálu a vlnovce procházejícímu vzduchu. U deskožebrových výměníků "plate & bar" je třeba znát termickou účinnost žeber η . Účinnost žebra je výpočet skutečného celkového tepelného toku patou žebra při dané hodnotě součinitele přestupu tepla α_{air} na jeho povrchu. Účinnost žebra je tedy poměr skutečného tepelného toku patou vlnovce k tepelnému toku u dokonale vodivého žebra s nekonečně velkou tepelnou vodivostí λ . Vzhledem k poměru výšky a tloušťky žebra se při řešení zanedbává změna teploty po tloušťce, a tudíž se počítá pouze se změnou po výšce žebra.

V případě žebra ve tvaru vlny je dle [5] řešením funkce hyperbolická, účinnost žebra bude vyjádřená

$$\eta = \frac{tanh\xi}{\xi} \tag{32}$$

kde ξ je parametr žebrování.

$$\xi = 2\sqrt{Bi} \frac{F_H}{F_T} \tag{33}$$

Dominik Buben

kde F_T je tloušťka materiálu vlnovce, F_H je výška vlnovce, je parametr žebrování vlnovce a η je účinnost žebrování.

V případě deskožebrových výměníků je třeba dosadit do výpočtu účinnosti η poloviční výšku žebra, což vyplývá z faktu, že nulový tok je vzhledem k symetrii právě uprostřed žebra. Tepelný odpor při přestupu tepla z vlnovce a kanálu do proudicího vzduchu lze získat dosazením do Biotova kritéria

$$Bi = \frac{\alpha_a \cdot \frac{F_H}{2}}{\lambda_s}$$
(34)

kde α_a je součinitel přestupu tepla na straně vzduchu, F_H je výška vlnovce, λ_s je tepelná vodivost vlnovce.

Tepelný odpor při přestupu tepla z vlnovce a kanálu do proudicího vzduchu je vyjádřen vztahem

$$R_{\alpha_a} = \frac{1}{\eta . \alpha_a} \qquad [m^2. K. W^{-1}]$$
 (35)

6.4. Popis celkového prostupu tepla

Celkový součinitel prostupu tepla je vyjádření přestupu tepla z tekutiny kanálu na stěnu, následným vedením stěnou kanálu a přestupem z vnějšího povrchu kanálu a vlnovce do proudicího vzduchu. Stanovení celkového součinitele prostupu tepla je nezbytné pro získání celkového výkonu výměníku výpočtem NTU metody.

$$k = \frac{1}{R_1 + R_2 + R_3} = \frac{1}{\frac{S_{Tout}}{S_{Tin} \cdot \alpha_W} + \frac{p_T}{\lambda_{Al}} + \frac{1}{\eta \cdot \alpha_a}} \qquad [W. \, m^{-2}. \, K^{-1}] \tag{36}$$

kde k je součinitel prostupu tepla, R₁ je tepelný odpor při přestupu tepla z tekutiny proudicí na straně vody na stěnu kanálu, R₂ je tepelný odpor stěny kanálu, R₃ je tepelný odpor při přestupu tepla z povrchu vlnovce a kanálů na straně vzduchu do okolí, S_{Tout} je celková vnější plocha pro výměnu tepla výměníku s okolím, S_{Tin} je celková plocha pro výměnu tepla proudicí tekutiny na straně vody s jednotlivými stěnami kanálů, α_w je součinitel přestupu tepla z tekutiny na straně vody na stěnu kanálu, α_a je součinitel přestupu tepla z vnější teplosměnné plochy do okolí, p_T je tloušťka mezistěny tvořící kanál, λ_{Al} je součinitel tepelné vodivosti hliníku, η je účinnost žebra vlnovce.

7. Zadání pro výpočet a měření výměníku

7.1. Vstupní veličiny

Na základě požadavků zákazníka, kdy jsou nejčastěji uváděny mezi vstupní parametry pro teplosměnná média voda, vzduch, vstupní teploty a průtoky. Vstupní teplota vody byla nastavena na 80 °C z důvodu maximální bezpečného ohřevu na zařízení. Tato teplota je považována za reálnou provozní teplotu. Teplota vzduchu 25 °C byla zvolena z důvodu běžně vyskytující se průměrné teploty v reálných podmínkách. Tato teplota byla snadno dosažitelná na experimentálním zařízení vzhledem k okolní teplotě ve zkušebně. V návaznosti na parametry čerpadla v experimentu byly zvoleny 3 různé průtoky vody, tak aby byly body dostatečně vzdálené od sebe, aby bylo možné vytvořit funkční závislost. byl pokryt pracovní rozsah výměníku. Běžná provozní oblast tohoto výměníku je v laminární oblasti. Vstupní průtok na straně vzduchu byl volen na základě běžného rozsahu použití výměníku.

		á data	zadání						
na	astaven	la data	WP1	WP2	WP3				
	$T_{w_{in}}$	[°C]	80	80	80				
∧p	T_{w_out}	[°C]	-	-	-				
2	ΔT_{w}	[K]	-	-	-				
ana	m _w	[m ³ .h ⁻¹]	1	2	3				
Str	Δp_w	[Pa]	-	-	-				
	Qw	[kW]	-	-	-				
	T_{a_in}	[°C]	25	25	25				
	T_{a_out}	[°C]	-	-	-				
rch	ΔT_{a}	[K]	-	-	-				
ıpz	ma	[kg.s ⁻¹]	-	-	-				
ر a ر	Va	[m ³ .h ⁻¹]	900	1800	2700				
trar	Va	[m ² .s ⁻¹]	-	-	-				
Ś	Δp_{a}	[Pa]	-	-	-				
	Qa	[kW]	-	-	-				

			1/1/100	ăník hozy	vířičo	Výměník s vířičem			
na	staven	á data	vym	enik bez	virice	vym	enik s vir	icem	
110	istaven		WP1	WP2	WP3	WP1	WP2	WP3	
	$T_{w_{in}}$	[°C]	79,6	80,3	80,5	80,1	79,4	80,2	
ò	T_{w_out}	[°C]	-	-	-	-	-	-	
0 1	ΔT_{w}	[K]	-	-	-	-	-	-	
ana	m _w	[kg.s ⁻¹]	0,28	0,54	0,81	0,27	0,55	0,81	
Str	Δp_{w}	[Pa]	-	-	-	-	-	-	
	Qw	[kW]	-	-	-	-	-	-	
	T_{a_in}	[°C]	25,2	25,2	25,1	25,2	25,1	25,1	
ъ	T_{a_out}	[°C]	-	-	-	-	-	-	
hch	ΔT_{a}	[K]	-	-	-	-	-	-	
ıpz	ma	[kg.s ⁻¹]	0,29	0,58	0,88	0,29	0,58	0,87	
ן פר	V_{a}	[m³.h⁻¹]	898	1802	2718	892	1796	2699	
trar	Va	[m ² .s ⁻¹]	1,0	2,0	3,0	1,0	2,0	3,0	
Ś	Δp_{a}	[Pa]	-	-	-	-	-	-	
	Qa	[kW]	-	-	-	-	-	-	

Tab. 3.: Reálné vstupní parametry nastavené v rámci experimentu

7.2. Geometrické parametry

V rámci výroby etalonu jsme zvolili základní rozměry jednotlivých komponentů sítě tak, aby bylo možné na výměníku naměřit požadované pracovní body. Jedná se především o požadované průtoky vody na primární straně, průtok vzduchu na sekundární straně, nejnižší možné tlakové ztráty na straně vody a na straně vzduchu.

Obr. 18.: Skládaný výměník "plate & bar" – etalon. [Výkres autor]

Geometrie výměníku										
Vlnovec s prostři	hem [mm]	Skládaný kanál [mm]							
Hloubka vlnovce	F_d	65 mm	Šířka dynamopásu	d_w	5 mm					
Výška vlnovce	F_h	7,8 mm	Výška dynamopásu	d_h	2,5 mm					
Rozteč vlnovce	F_p	4,8 mm	Tloušťka mezistěny	p_T	0,53 mm					
Délka vlny	d_f	18,36 mm	Délka kanálu	L	482 mm					
Tloušťka vlnovce	F_t	0,15 mm	Šířka kanálu	а	65 mm					
Výška prostřihu	L_h	5,3 mm	Výška kanálu	b	2,5 mm					
Rozteč prostřihu	L_p	1,2 mm	Výška lišty	b_H	8,15 mm					
Úhel prostřihu	La	35 °	Šířka lišty	b_W	8,15 mm					
Počet vln jedné řady	n_p	101	Počet kanálů	n _{ch}	41					
Počet vlnovců	n _{fin}	42								

Tab. 4.: Parametry skládaného výměníku "plate & bar" - etalon

Obr. 19.: Skládaný výměník "plate & bar" - etalon. [Foto autor]

8. Metody výpočtu pro návrh výměníku

8.1. Obecný postup návrhového výpočtu

V první fázi se volí konstrukční typ výměníku dle prostředí, do kterého je určen. Jedná se především o náročnost prostředí, ve kterém výměník pracuje, z níž vyplývá odolnost výměníku. V rámci návrhu geometrie výměníku jsou určující parametry vstupní a výstupní teploty a požadovaného výkonu. Následně se pomocí jedné z metod výpočtu určí základní parametry výměníku, které následně společně se součinitelem prostupu tepla určí velikost teplosměnné plochy výměníku.

8.2. Metody návrhu výměníků

Problematika tepelných výměníků zahrnuje celou řadu úloh. Těmi základními a prakticky nejvýznamnějšími jsou návrhový výpočet a kontrolní výpočet. V případě kontrolního výpočtu jde nejčastěji o ověření tepelného výkonu, případně tlakových ztrát již existujícího výměníku. Cílem konstrukční úlohy je naproti tomu na základě zvoleného typu výměníku, specifikovaných pracovních médií a jejich fyzikálních vlastností, vybraných konstrukčních materiálů a řady dalších výchozích parametrů stanovit velikost teplosměnných ploch a konkrétní technické řešení. Jak pro návrh, tak pro kontrolu lze využít dvou běžně užívaných metod. První z nich předpokládá využití konceptu středního logaritmického teplotního spádu, druhá novější metoda závislá a bezrozměrném čísle NTU.

8.3. Střední logaritmický teplotní spád (LMTD)

Metoda LMTD je vhodnou metodou pro tzv. konstrukční návrhy, tedy úkoly, kdy máme dány vstupní i výstupní teploty obou tekutin a naším úkolem je zvolit výměník a jeho teplosměnnou plochu. Ve své podstatě tato metoda využívá upravený Newtonův ochlazovací zákon. Jednoduchým odvozením za použití rovnosti tepelných toků, které jedna tekutina odevzdá a druhá přijme, a Newtonova ochlazovacího zákona lze získat vztah

$$Q = k.S.\frac{\Delta T_1 - \Delta T_2}{\ln \frac{\Delta T_1}{\Delta T_2}}$$
(37)

kde zlomek je zmíněným středním logaritmickým teplotním rozdělením. Teplotní diference ΔT_1 , respektive ΔT_2 odkazují na jeden, resp. druhý konec výměníku. Avšak takto získaný teplotní spád nelze aplikovat např. na výměníky s příčným proudem. Při odvozovaní rovnice v tomto případě dostaneme komplexní funkci závislou na všech čtyřech teplotách T_{w_in} , T_{w_out} , T_{a_in} , T_{a_out} . Často se proto používá takzvaný korekční faktor F. Rovnice, pak přechází do tvaru

$$Q = F.k.S.\Delta T_{ln} \tag{38}$$

kde ΔT_{ln} je střední logaritmický teplotní spád protiproudého výměníku pracujícího při stejných teplotách.

Korekční faktor F je bezrozměrnou funkcí typu výměníku a veličin P, R kde:

$$P = \frac{T_{a_out} - T_{a_in}}{T_{w_in} - T_{a_in}}$$
(39)

$$R = \frac{T_{w_in} - T_{w_out}}{T_{a_out} - T_{a_in}}$$
(40)

8.4. Metoda "ε-NTU"

Základní výhodou této metody je jednoduchý technický přístup k výpočtu účinnosti výměníku v závislosti na základních parametrech výměníku a médií proudicích přes výměník. Postup vychází z veličiny NTU popisující výkon výměníku tepla jako bezrozměrné číslo závislé na parametrech výměníku i provozních podmínkách. Tudíž s měnícími se podmínkami provozu se rovněž mění. Hodnota NTU vychází ze základních technických veličin, jakými jsou součinitel prostupu tepla a velikost teplosměnné plochy a tepelná kapacita průtoku. Rovnice pro výpočet NTU je

$$NTU = \frac{k \cdot S}{W_{min}} \tag{41}$$

kde k je součinitel prostupu tepla teplosměnné plochy výměníku, S je celková teplosměnná plocha výměníku, W_{min} – menší z průtokových kapacit ochlazovaného a ohřívaného média, W_{max} je větší z průtokových kapacit ochlazovaného a ohřívaného media

$$W_1 = \dot{m_1} \cdot c_{p1} \tag{42}$$

$$W_2 = \dot{m_2} \cdot c_{p2}$$
 (43)

$$W = \frac{W_{min}}{W_{max}} \tag{44}$$

kde $\dot{m_1}$ a $\dot{m_2}$ jsou hmotnostní průtoky proudů.

Parametr NTU je nejčastěji využíván pro výpočet účinnosti přenosu tepla, z čehož lze dále dopočítat přenesené teplo mezi médii ve výměníku, a výstupní teploty jednotlivých médií. Případně je možné postupovat obráceně a z požadovaného výkonu, teplotních spádů ochlazovaného a ohřívaného média dopočítat parametr NTU a potom velikost teplosměnné plochy.

Stanovení termické účinnosti je závislé na uspořádání proudů ve výměníku. Následovně jsou uvedeny rovnice pro výpočet termické účinnosti pro souproudý, protiproudý a křížoproudý výměník za předpokladu neměnného skupenství během průtoku výměníkem. [1]

Souproudý výměník

$$\varepsilon = \frac{1 - e^{-NTU.(1+W)}}{1+W} \tag{45}$$

Protiproudý výměník

$$\varepsilon = \frac{1 - e^{-NTU.(1 - W)}}{1 - W.e^{-NTU.(1 - W)}}$$
(46)

Křížoproudý výměník

$$\varepsilon = 1 - e^{\frac{-(1 - e^{-NTU.W})}{W}}$$
(47)

Pro poměr W = 1 je nutné nalézt v literatuře zvláštní tvar rovnic. Na základě definice termické účinnosti výměníku tepla a předpokladu zamezení ztrát tepla do okolí výměníku lze jednoduše definovat přenesený tepelný tok $Q\tau$ výstupní teploty společně pro zmiňované uspořádání výměníků.

$$Q = \varepsilon . Q_{max} = \varepsilon . W_{min} . (T_{in_w} - T_{out_a})$$
(48)

$$T_{a_{out}} = T_{a_{in}} - \varepsilon \cdot \frac{W_{min}}{W_a} (T_{a_{in}} - T_{w_{in}})$$
(49)

$$T_{w_out} = T_{w_in} - \varepsilon \cdot \frac{W_{min}}{W_2} (T_{a_in} - T_{w_in})$$
(50)

kde T_{a_in}, T_{a_out} je vstupní a výstupní teplota ochlazovaného media, T_{w_in}, T_{w_out} je vstupní a výstupní teplota ohřívaného média [°C]

Uvedené rovnice platí obecně pro jakákoliv média, v literatuře lze dohledat další rovnice pro vícenásobné křížení proudů, pro případ, kdy jedna z látek mění skupenství. [1]

8.5. Teoretický výpočet výměníku bez vířiče

Pro typ výměníku "plate & bar" je vhodnější zvolit metodu ε-NTU metoda, která pracuje se vstupními teplotami a jejich průtoky. Tato metoda pro daný typ výměníku a zadání vyšší přesnost.

8.5.1. Určení součinitele přestupu tepla na straně vody

U měřeného výměníku "plate & bar" je každý kanál na straně vody rozdělen na dva dílčí kanálky vždy vložením dynamopásu, který zajišťuje pevnost celého systému. Kvůli tomuto rozdělení je nutné přepočítat hydraulický průměr D_{H_ch} s rozměry dílčího kanálku

$$D_{H_ch} = \frac{4S}{o} = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b} = \frac{2.25 \cdot 10^{-3} \cdot 2.5 \cdot 10^{-3}}{25 \cdot 10^{-3} + 2.5 \cdot 10^{-3}} = 0,0046 m$$
(51)

Z hmotnostního průtoku, který je na vstupu nastavován pomocí čerpadla, je následně spočítána rychlost proudění vody u_w

$$u_w = \frac{m_w}{\rho_{w.2.n_{ch}.a.(\frac{b}{2})}} = \frac{0.542}{974,84.2.41.0,0025.(\frac{0.05}{2})} = 0.11 \ m. \ s^{-1}$$
(52)

Na základě rychlosti proudění vody u_w a známého hydraulického průměru D_{H_ch} je spočtena hodnota Reynoldsova čísla Re_w pro proudění tekutiny ve výměníku na straně vody

$$Re_{w} = \frac{u_{w} \cdot D_{H_ch}}{v_{w}} = \frac{0.11 \cdot 0.0046}{0.388 \cdot 10^{-6}} = 1265$$
(53)

Dále je spočteno Graetzovo číslo, ve kterém je charakteristickým rozměrem L_{ch} délka kanálu na straně vody, hodnota Pradltova čísla Pr_w je dosazená z tabulek pro předpokládanou střední teplotu vody

$$Gz = \frac{Re_w Pr_w}{L_{ch}/D_{H_ch}} = \frac{1265 \cdot 2.4}{0.482/0.0046} = 28$$
(54)

Dle Hausenovo vztahu [1] upraveného na základě obdélníkového kanálu je vypočteno Nusseltovo číslo

$$Nu_{w} = \frac{\alpha_{w}.D_{H_ch}}{\lambda_{w}} = 6,82 + \frac{0.0668.Gz}{1+0.04.Gz^{2/3}} = 6,82 + \frac{0.0668.28}{1+0.04.28^{2/3}} = 8$$
(55)

Součinitel přenosu tepla α_w na straně vody je vypočítán na základě Nusseltova vztahu, do kterého je dosazena hodnota součinitele tepelné vodivosti vody λ_w z tabulek pro předpokládanou střední teplotu vody

$$\alpha_w = \frac{Nu_w \lambda_w}{D_{H_c ch}} = \frac{8.0,67}{0,0046} = 1209 \ W. \ m^{-2}. \ K^{-1}$$
(56)

Dracovní bod	u _w	Re _w	Gzw	Pr_{w}	D_{h_ch}	Vw	Nu _w	α_w
	[m.s ⁻¹]	[-]	[-]	[-]	[m]	[m ² .s ⁻¹]	[-]	[W.m ⁻² .K ⁻¹]
WP1	0,1	663	14				7	1117
WP2	0,1	1305	29	2	4,6.10 ⁻³	0,4.10 ⁻⁶	8	1209
WP3	0,2	1897	42				8	1286

Tab. 5: Dopočítané hodnoty pro stranu vody u výměníku bez vířiče

8.5.2. Určení součinitele přestupu tepla na straně vzduchu

Vstupní nastavovaná hodnota objemového průtoku vzduchu \dot{V}_a se při průchodu vlnovci zvýší díky přestupu tepla z povrchu výměníku S_{Tout} dle vztahu

$$\dot{V}_{a_{-}z} = \frac{\dot{V}_{a}}{\rho_{a_{1}}/\rho_{a_{2}}} = \frac{1802}{1,112/1,168} = 1892 \ m^{3}. h^{-1}$$
(57)

Rychlost proudění vzduchu u_a je počítána jako rychlost uvnitř vlnovců na základě zrychleného objemového průtoku $\dot{V}_{a,z}$

DP-IB-2020

Dominik Buben

$$u_a = \frac{\frac{V_{a_z}}{3600}}{S_c - S_n} = \frac{\frac{1892}{3600}}{(0.482.0.487) - 0.082} = 3.44 \text{ m. s}^{-1}$$
(58)

Hydraulický průměr vlnovce je spočítán na základě rozdělení vzduchového kanálu tvořený vlnovcem na dva pravoúhlé trojúhelníky

$$D_{H_{f}} = \frac{4S}{o} = \frac{4cd}{2c + 2\sqrt{c^{2} + d^{2}}} = \frac{4.2, 4.7, 8}{2.2, 4 + 2\sqrt{2}, 4^{2} + 7, 8^{2}} = 0,0036 m$$
(59)

Do vztahu pro výpočet Reynoldsova číslo Re_a charakterizující proudění vzduchu přes vlnovce je dosazena kinematická viskozita vzduchu v_a pro střední teplotu

$$Re_a = \frac{u_a \cdot D_{H_f}}{v_a} = \frac{3,44 \cdot 0,0036}{1,78 \cdot 10^{-5}} = 687$$
(60)

Na základě vybrané korelace Chang & Wang [10] je dále spočítáno Reynoldsovo číslo $Re_{l_{p'}}$ ve kterém je charakteristický rozměr rozteč prostřihu vlnovce L_p

$$Re_{l_p} = \frac{u_a \cdot l_p}{v_a} = \frac{3,44 \cdot 0,0012}{1,78 \cdot 10^{-5}} = 233$$
(61)

Na základě korelace Chang & Wang [10] jsou dosazeny jednotlivé charakteristické rozměry vlnovce s prostřihem a na základě a spočítán j-faktor určující efektivitu přestupu tepla na daném typu vlnovce

$$j = Re_{L_p}^{-0,49} \cdot \left(\frac{\theta}{90}\right)^{0,27} \cdot \left(\frac{F_p}{L_p}\right)^{-0,14} \cdot \left(\frac{F_h}{L_p}\right)^{-0,29} \cdot \left(\frac{F_d}{L_p}\right)^{-0,23} \cdot \left(\frac{L_l}{L_p}\right)^{0,68} \cdot \left(\frac{t_s}{L_p}\right)^{-0,28} \cdot \left(\frac{F_t}{L_p}\right)^{-0,05} = 232,568^{-0,49} \cdot \left(\frac{31}{90}\right)^{0,27} \cdot \left(\frac{4,8}{1,2}\right)^{-0,14} \cdot \left(\frac{7,8}{1,2}\right)^{-0,29} \cdot \left(\frac{65}{1,2}\right)^{-0,23} \cdot \left(\frac{5,3}{1,2}\right)^{0,68} \cdot \left(\frac{11,4}{1,2}\right)^{-0,28} \cdot \left(\frac{0,15}{1,2}\right)^{-0,05}$$
(62)

$$j = 0,016$$
 (63)

Součinitel přestupu tepla na straně vzduchu α_a je získán na základě Colburnovo vztahu

$$\alpha_a = \frac{Re_a \cdot \Pr_a^{1/3} \cdot j \cdot \lambda_a}{D_{H_f}} = \frac{687 \cdot 0.71^{1/3} \cdot 0.017 \cdot 0.027}{0.0036} = 76 \ W \cdot m^{-2} \cdot K^{-1}$$
(64)

Pracovní bod	V_{a_z}	Ua	Rea	Re _{lp}	$D_{h_{f}}$	Va	j	f	ΔP	α_{a}
	[m³.h⁻¹]	[m.s ⁻¹]	[-]	[-]	[m]	[m ² .s ⁻¹]	[-]	[-]	[Pa]	[W.m ⁻² .K ⁻¹]
WP1	943	1,7	342	116			0,023	0,042	16	55
WP2	1892	3,4	687	233	3,6.10 ⁻³	1,8.10-5	0,016	0,032	49	76
WP3	2854	5,2	1036	351			0,014	0,028	96	96

Tab. 6: Dopočítané hodnoty pro stranu vzduchu u výměníku bez vířiče

8.5.3. Výpočet celkového součinitele prostupu tepla

Pro výpočet celkového prostupu tepla je potřeba znát hodnoty teplosměnných ploch na straně vzduchu i na straně vody.

Teplosměnná plocha S_{Tout_f} vztažená ke straně vzduchu je charakterizována jako celková plocha obou stran všech vlnovců. Plocha vlnovce je vypočítána na základě délky vlny d_f , hloubkou vlnovce F_D a počtu vln na jednom vlnovci n_p násobená počtem vlnovců výměníku n_f

$$S_{Tout_f} = d_f \cdot 2 \cdot F_d \cdot n_p \cdot n_f = 18,36 \cdot 2 \cdot 65 \cdot 101 \cdot 42 = 10,1 m^2$$
(65)

Teplosměnná plocha S_{Tout_ch} vztažená také ke straně vzduchu je charakterizována jako celková vnější plocha všech kanálů, které je ve styku s proudicím vzduchem. Vnější plocha kanálů je vypočítána jako součet tloušťky mezistěny p_T , výšky dynamopásu d_H a hloubky výměníku F_d násobený délkou kanálu w_c a počtem kanálů výměníku vynásobený dvěma.

$$S_{Tout\ ch} = 2.w_c.n_{ch}.(p_T + d_H + F_D) = 2.7\ m^2$$
 (66)

Celková teplosměnná plocha strany vody S_{Tout} je součtem dílčích teplosměnných ploch vlnovce S_{Tout_f} a kanálu S_{Tout_ch}

$$S_{Tout} = S_{Tout_f} + S_{Tout_ch} = 12,8 m^2$$
 (67)

Teplosměnná plocha S_{Tin} je vnitřní plocha všech kanálů výměníku, kterými proudí tekutina. Výpočet je tedy založen na základních rozměrech kanálu, který charakterizuje výška dynamopásu d_H , šířka dynamopásu d_W , hloubka výměníku F_d a délka kanálu w_c

$$S_{Tin} = 2 \cdot w_c \cdot (F_D - 2 \cdot d_W + d_H) = 0,482 \cdot 2 \cdot (0,065 - 2 \cdot 0,005 + 0,0025) = 2,2 m^2$$
(68)

Celkový prostup tepla k je charakterizován přestupem tepla proudicí tekutiny na straně vody na stěnu kanálu, následně vedením přes stěnu kanálu až na vlnovec a vnější povrch kanálu, kde přestupuje do okolního vzduchu. Na základě spočítaných součinitelů přestupu tepla na straně vody α_w a vzduchu α_a , vnitřních S_{Tin} a vnějších S_{Tout} teplosměnných ploch, účinnosti vlnovce η , tloušťce mezistěny p_T a součiniteli tepelné vodivosti hliníku λ_{Al} je celkový prostup tepla

$$k = \frac{1}{\frac{S_{Tout}}{S_{Tin.aw}} + \frac{p_T}{\lambda_{AI}} + \frac{1}{\eta.a_a}} = \frac{1}{\frac{12,8}{2,2.1209,5} + \frac{0,00053}{237} + \frac{1}{0,98.76}} = 56 W.m^{-2}.K^{-1}$$
(69)

Bracovní bod	S_{Tout_f}	$S_{\text{Tout_ch}}$	S _{Tout}	S_{Tin}	λ	k	
Pracovili bou	[m²]	[m ²]	[m ²]	[m ²]	[W.m ⁻¹ .K ⁻¹]	[W.m ⁻² .K ⁻¹]	
WP1						42,0	
WP2	10,1	2,7	12,8	2,2	237	56,0	
WP3						66,1	

Tab. 7: Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku bez vířiče

8.5.4. Výpočet výkonu výměníku pomocí ε-NTU metody

Pro výpočet výkonu Q pomocí metody ε -NTU metody je potřeba znát jednotlivé tepelné kapacity průtoků. Na chování výměníku má větší vliv slabší proud, jehož tepelná kapacita průtoku W_{min} je menší. Tento slabší proud je ovlivněn proudem W_{max} s tím, že se může W_{min} ohřát nebo ochladit. Tepelné kapacity průtoku na straně vody a vzduchu jsou závislé na hmotnostním průtoku \dot{m} daného proudu a na měrné tepelné kapacitě proudu c_P

$$W_w = c_{P_w} \cdot \dot{m}_w = 4193 \cdot 0.542 = 2273 \, W \cdot K^{-1} \tag{70}$$

$$W_a = c_{P_a} \cdot \dot{m}_a = 1010 \cdot 0,584 = 590 \, W \cdot K^{-1} \tag{71}$$

Nižší hodnota tepelné kapacity průtoku určí W_{min}

$$W_a = W_{min} \tag{72}$$

$$W_w = W_{max} \tag{73}$$

Poměr tepelných kapacit průtoků

$$W = \frac{W_{air}}{W_{max}} = \frac{590}{2273} = 0,259 \tag{74}$$

Maximální hodnota tepelného výkonu výměníku Q_{max} je určena rozdílem vstupních teplot na straně vzduchu a vody vynásobená menší tepelnou kapacitou průtoku W_{min}

$$Q_{max} = W_{min} \cdot (T_{in_a} - T_{in_w}) = 590 \cdot (25, 2 - 80, 3) = 32,51 \, kW \tag{75}$$

Bezrozměrné kritérium NTU charakterizuje velikost výměníku

$$NTU = \frac{S_{Tout.k}}{W_{min}} = \frac{12.8 \cdot 55.9}{590} = 1.2$$
(76)

Účinnost ε charakterizuje reálný tepelný výkon výměníku, který je schopný přenést vzhledem k maximální možné hodnotě Q_{max}

$$\varepsilon = 1 - e^{\left(\frac{NTU^{0,22}}{W} \cdot \left[e^{(-W.NTU^{0,78}) - 1}\right]\right)} = 1 - e^{\left(\frac{1,22^{0,22}}{0,259} \cdot \left[e^{(-0,259,1,22^{0,78}) - 1}\right]\right)} = 0,65$$
(77)

Teplený výkon výměníku je

$$Q = Q_{max} \cdot \varepsilon = 32,51 \cdot 0,65 = 21,13 \, kW \tag{78}$$

Tab. 8: Dopočítané hodnoty tepelných kapacit proudů a tepelných výkonů u výměníku bez vířiče

Pracovní bod	W	Ww	Wa	NTU	Q _{max}	3	Q
	[W.K ⁻¹]	[W.K ⁻¹]	[W.K ⁻¹]	[-]	[kW]	[-]	[kW]
WP1	0,3	1153	294	1,83	15,99	0,78	12,43
WP2	0,3	2273	590	1,22	32,51	0,65	21,13
WP3	0,3	3392	888	0,96	49,23	0,57	28,05

8.6. Teoretický výpočet výměníku s vířičem

Rozměrově je výměník s vířičem identický s výměníkem bez vířiče. Pro výpočet součinitele přestupu tepla na straně vzduchu je tedy možné aplikovat stejné vztahy (57) - (64) jako v případě výměníku bez vířiče. Do vztahů je nutné dosadit nová vstupní data. Odchylka nových vstupních dat je způsobena kolísáním teplot ve zkušebně. Jediný rozdíl mezi výměníky je vířič vložený do všech kanálů na straně vody. Pro výpočet součinitele přestupu tepla na straně vody je tedy potřeba navrhnout nové vztahy tak, aby výsledné vztahy popisovaly geometrii výměníku s co nejnižší odchylkou.

8.6.1. Určení součinitele přestupu tepla na straně vody

U měřeného výměníku "plate & bar" s vířičem již kanál není rozdělen na dva dílčí kanálky. Místo dynamopásu uprostřed je do kanálu vložen vířič, proto je hydraulický průměr kanálu D_{H_ch} počítán pro celý kanál dohromady jako

$$D_{H_ch} = \frac{4S}{o} = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b} = \frac{2.50.10^{-3}.2, 5.10^{-3}}{50.10^{-3}+2, 5.10^{-3}} = 0,0048 m$$
(79)

Následně je vypočítána rychlost proudění vody u_w v kanále na základě nastaveného hmotnostního průtoku m_w opět pro celý kanál bez rozdělení

$$u_{W} = \frac{m_{W}}{\rho_{W}.2.n_{ch}.a.(\frac{b}{2})} = \frac{0.546}{974,84.41.0,0025.0,05} = 0.11 \ m.\ s^{-1}$$
(80)

Z rychlosti proudění je dopočítáno Reynoldsovo číslo pro danou rychlost proudění u_w a hydraulický průměr $D_{H\ ch}$

$$Re_{w} = \frac{u_{w} \cdot D_{H_{ch}}}{v_{w}} = \frac{0.11 \cdot 0.0048}{0.388 \cdot 10^{-6}} = 1341$$
(81)

Následně Graetzovo číslo

$$Gz = \frac{Re_w.Pr_w}{\frac{L_{ch}}{D_{H_{ch}}}} = \frac{1341 \cdot 2.4}{\frac{0.482}{0.0048}} = 32$$
(82)

Hodnota Nusseltova čísla se na základě literatury [1] vypočítá dle zvoleného vzorce popisující proudění hranatým kanálem plněným vířičem jako

$$Nu_{w} = \frac{\alpha_{w}.D_{H_{ch}}}{\lambda_{w}} = 6,82 + 3,89.Gz^{1/3} = 6,82 + 3,89.32^{1/3} = 19$$
(83)

Součinitel přestupu tepla α_w pro kanál plněný vířičem je

$$\alpha_{W} = \frac{Nu_{W}.\lambda_{W}}{D_{H_{c}ch}} = \frac{19.0,67}{0,0048} = 2688 \ W.\ m^{-2}.\ K^{-1}$$
(84)

Bracovní bod	u _w	Re _w	Gzw	Prw	D_{h_ch}	Vw	Nuw	α_w
	[m.s ⁻¹]	[-]	[-]	[-]	[m]	[m ² .s ⁻¹]	[-]	[W.m ⁻² .K ⁻¹]
WP1	0,1	673	16				17	2333
WP2	0,1	1341	31	2	4,6.10 ⁻³	0,4.10 ⁻⁶	19	2688
WP3	0,2	1995	47				21	2932

Tab. 9: Dopočítané hodnoty pro stranu vody u výměníku s vířičem

8.6.2. Určení součinitele přestupu tepla na straně vzduchu α_a

Vztahy pro výpočet níže uvedených dat v tabulce jsou stejné jako vztahy (57) - (64) při výpočtu výměníku bez vířiče. Liší se pouze v nepatrných odchylkách vstupních veličin. Strany vzduchu výměníků jsou geometricky identické.

Pracovní bod	V_{a_z}	Ua	Re_a	Re _{lp}	$D_{h_{f}}$	Va	j	f	ΔP	α _a
	[m ³ .h ⁻¹]	[m.s ⁻¹]	[-]	[-]	[m]	[m ² .s ⁻¹]	[-]	[-]	[Pa]	[W.m ⁻² .K ⁻¹]
WP1	937	1,7	340	115			0,028	0,042	16	55
WP2	1886	3,4	685	232	3 <i>,</i> 6.10 ⁻³	1,8.10-5	0,021	0,032	49	78
WP3	2834	5,2	1029	348			0,017	0,028	94	96

8.6.3. Výpočet celkového součinitele prostupu tepla k

Na základě nově vypočítaných součinitelů přenosu tepla α_w pro kanál vyplněný vířičem jsou v tabulce uvedeny hodnoty součinitelů prostupu tepla pro jednotlivé pracovní body.

Tab. 11: Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku s vířičem

Bracovní bod	S_{Tout_f}	$S_{\text{Tout_ch}}$	S _{Tout}	S _{Tin}	λ	k
Pracovili bou	[m²]	[m ²]	[m ²]	[m ²]	[W.m ⁻¹ .K ⁻¹]	[W.m ⁻² .K ⁻¹]
WP1						47
WP2	10,1	2,7	12,8	2,2	237	66
WP3						79

8.6.4. Výpočet výkonu výměníku pomocí metody ε-NTU metody

Uplatněním vztahů pro výpočet součinitele přestupu tepla α_w pro kanál vyplněný vířičem bylo získáno navýšení tepelného výkonu.

Tab. 12: Dopočítané hodnoty tepelných kapacit proudů a tepelných výkonů u výměníku s vířičem

Pracovní bod	W	Ww	Wa	NTU	Q _{max}	З	Q
	[W.K ⁻¹]	[W.K ⁻¹]	[W.K ⁻¹]	[-]	[kW]	[-]	[kW]
WP1	0,3	1149	293	2,1	16,07	0,81	13,04
WP2	0,3	2289	588	1,4	31,93	0,70	22,46
WP3	0,3	3405	883	1,2	48,64	0,63	30,77

Dominik Buben

9. Experimentální měření

Po složení tratě pro měření výkonu a tlakových ztrát výměníku se provedlo nahřátí vody v zásobníku na požadovanou teplotu 80°C. Po nahřátí se spustil elektrický ohřívač vzduchu, který ohříval ventilátorem nasávaný vzduch z vnitřního prostředí zkušebny. Ohřátím médií bylo dosaženo vhodných podmínek pro simulování reálného provozu výměníku s možností nastavení požadovaných pracovních bodů. Po instalaci tratě, všech jejich komponent a čidel a připojení výměníku k vodnímu okruhu bylo možné přikročit k odvzdušnění s využitím odvzdušňovacích ventilů na nátrubcích výměníku. To je úkon nezbytný k dosažené správné funkce a distribuce ohřívací vody z komor do jednotlivých kanálů výměníku. Konektory všech snímačů byly přivedeny do měřicí ústředny a díky jejímu propojení s počítačem byly měřené hodnoty sledovány v reálném čase.

9.1. Měřicí trať

Měřicí trať se skládá z části vodního a vzduchového okruhu. Ve vodním okruhu probíhá akumulace vody do nádrže, kde se předehřívá na požadovanou teplotu 80 °C. Zahřátá voda simuluje chlazenou tekutinu uvnitř výměníku za provozu v reálném systému. Dále obsahuje chladicí jednotku sloužící pro zchlazení kapaliny ve vodním okruhu. Pomocí oběhových čerpadel zajišťující společně s ventily proudění vody přes výměník, tak aby mohla být kapalina chlazena prouděním vzduchu ve vzduchovém okruhu a na výstupu výměníku bylo možné měřit čidly teploty.

Vzduchový okruh je tvořen předehřevem vzduchu, který je následně nasáván ventilátorem dále do potrubí směrem ke stabilizaci proudění vzduchu. Po stabilizování proudí vzduch od ventilátoru sítí výměníku. Tlaky jsou měřeny čidly před a za výměníkem z čehož můžeme spočítat tlakovou ztrátu na straně vzduchu. Současně měříme i teploty před výměníkem a za výměníkem dohromady 9 senzory teploty pro kontrolu správného rozložení proudění vzduchu.

Obr. 20.: Měřicí trať. [Foto autor]

	umíst	ění čidel	Název měřidla	Dodavatel	Typ měřidla	Měřící rozsah	Přesnost	Výrobní číslo					
				KOMBI	IÓVANÁ ČIDLA - TEPLOTA / VLH	KOST/TLAK	•						
	před clonou		Čidlo teploty/vlhkost/bar.tlaku	Ahlborn	ZAD 936 RAK	-100 + 200 °C	+/-0,2K	v.č. 15010001					
		pred clonou				0 - 100%RH	0,3%						
	rat					700-1100 mbar	+/-2,5mbar						
	1		ČIDLA TLAKU										
	na cloně		Tlakoměr vzduch	Ahlborn	DPS 0 - 25 000 Pa	0 - 25 000 Pa	+/-1%	v.č. 00024402A					
			Tlakoměr vzduch	Ahlborn	DPS 0 - 25 000 Pa	0 - 25 000 Pa	+/-1%	v.č. 00014402A					
			ČIDLA TEPLOTY										
⊐			Teploměr rychlý - stonkový Tst1	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
달			Teploměr rychlý - stonkový Tst2	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
zdl			Teploměr rychlý - stonkový Tst3	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
a		za	Teploměr rychlý - stonkový Tst4	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
ran		výměníkem	Teploměr rychlý - stonkový Tst5	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
s	jį,		Teploměr rychlý - stonkový Tst6	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
	něi		Teploměr rychlý - stonkový Tst7	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
	vý		Teploměr rychlý - stonkový Tst8	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
			Teploměr rychlý - stonkový Tst9	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
		a že d	Teploměr rychlý - stonkový Tst10	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
		prea výměníkem	Teploměr rychlý - stonkový Tst11	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
			Teploměr rychlý - stonkový Tst12	Ahlborn	Teploměr ZA 9020-FS	-100 + 1100 °C	I/0,1°C	v.č. FTA 15L0250					
		tlaková	ČIDLO TLAKU										
		ztráta	Tlakoměr vzduch	Ahlborn	FDA602-M1K,0-1250Pa, 40 m/s	0-1250Pa, 40 m/s	+/-0,5%	v.č.02110413					
		výměník											
		na vstupu	Teploměr do vody	Ahlborn	ZA 9030-FS1, Normal E4, Pt 100-	max 104°C	0,1 °C	v.č. 20028-10					
~		na výstupu	Teploměr do vody	Ahlborn	ZA 9030-FS1, Normal E4, Pt 100-	max 104°C	0,1 °C	v.č. 20029-10					
6		výměník			ČIDLO TLAKU		,						
a		na vstupu	Tlakoměr voda - kontrolní	Ahlborn	FD 8214 07R	0 - 1 bar	+/-0,5%	v.č. SN 903351					
Lan		na výstupu	Tlakoměr voda - kontrolní	Ahlborn	FD 8214 07R	0 - 1 bar	+/-0,5%	v.č. SN 903352					
w.	mez	ti vstup-výstup	Tlakoměr voda - diferenční	Ahlborn	FDA602D Type: PD-39X/80932	0 - 1,5 bar/3bar	0,05%	v.č. SN 903351					
		potrubí			ČIDLO PRŮTOKU VODY	•							
	VS	stupní potrubí	Turbínkový průtokoměr	Sika	VTR 1015	0,4-4 m3/h	+/-0,5%	v.č.212313					
um	ístění	lab centrál			MĚŘÍCÍ ÚSTŘEDNY - CENTRA	ÁLY							
	trana	vzduchu	Centrála laboratorní - 48 kanálová	Ahlborn	MA5690-1			v č A09120244 - 6.48					
	strar	na vodv	Centrála laboratorní - 9 kanálová	Ahlborn	MA2590-9			v.č H0209227G					

Tab. 13: Seznam měřicích zařízení

9.2. Vstupní a výstupní teploty

Pro potřeby stanovení tepelného výkonu výměníku je stěžejní stanovení změny teploty jednotlivých pracovních tekutin. Při měření jednotlivých teplot médií byly použity stonkové teploměry ZA 9020-FS s měřicím rozsahem -100 + 1100°C. Z důvodu nevyrovnanosti teplotního profilu v potrubí vzduchové strany za výměníkem je k získání správně naměřených dat nutné snímání teploty na více místech. Při měření bylo instalováno celkem 9 snímačů teploty. Pro dosažení vyrovnaného teplotního profilu byl použit mísič vzduchu.

9.3. Hmotnostní a objemový průtok tekutin

Pro měření objemového a hmotnostního průtoku vzduchu byl použit vrtulkový průtokoměr společně s clonou. Pro účely měření tepelného výkonu výměníku je nutné stanovit hmotnostní průtok pracovních látek. Většina průtokoměrů měří objemový průtok, který je následně nutný přepočítat

s využitím hustoty pracovní látky za dané teploty a tlaku na hmotnostní průtok. K měření průtoku na straně vody bylo použito turbínkového průtokoměru SIKA VTR1015 s přesností ±0,5 %. Princip měření průtokoměru spočívá v otáčení oběžného kola turbíny proudem pracovní tekutiny.

9.4. Tlak na vstupu a výstupu

Při realizaci projektu návrhu výměníku je k volbě vhodného ventilátoru či čerpadla znát tlakové ztráty výměníku jak na straně vody, tak na straně vzduchu. Celkový tlak proudicí tekutiny je tvořen statickou a dynamickou složkou. Měření tlakové ztráty na straně vody bylo provedeno pouze v jednom bodě na cloně. K výměníku byly připojeny na vstupu i výstupu měřicí nátrubky, tj. rovný kus potrubí stejného průměru jako je připojovací průměr výměníku. Na každém měřicím nátrubku byl umístěn odběr tlaku (blíže výměníku snímač teploty). I v tomto případě šlo o teploměry ZA 9020-FS.

9.5. Fyzikální vlastnosti pracovních látek a okolního prostředí

V rámci měření je zcela zásadní stanovit správně veličiny popisující fyzikální vlastnosti pracovních médií. Mezi základní fyzikální vlastnosti pracovních tekutin patří hustota, měrná tepelná kapacita a viskozita. Tyto hodnoty získáme z fyzikálních tabulek. V případě vody je měrná tepelná kapacita i hustota závislá pouze na teplotě, pro vzduch je z tohoto pohledu nutné brát v úvahu i tlak. Při provádění zkoušky se uvádí jako základní parametry vzduchu teplota a měrné vlhkosti vzduchu v prostředí zkušebny. Tyto hodnoty jsou následně využity pro určení fyzikálních vlastností vzduchu v měření. Pro potřeby výpočtů je nutné určit dynamickou a kinematickou viskozitu vzduchu, které jsou především funkcí teploty.

9.6. Měření výkonu

Měření tepelného výkonu bylo provedeno na každém médiu zvlášť. Na základě změřené vstupní, výstupní teploty a průtoků byl stanoven tepelný výkon na straně vzduchu. Na základě změření teploty a průtoku na vstupu a výstupu výměníku na straně vody byl stanoven tepelný výkon na straně vody. Tepelný výkon výměníku reprezentuje schopnost odevzdání nebo přijmutí tepla procházející vody procházejícímu vzduchu. Určením střední hodnoty z těchto získaných dílčích tepelných výkonů byl získán tepelný výkon určený pro porovnání s teoreticky získanou hodnotou.

Dominik Buben

9.7. Vyhodnocení

Po složení tratě pro měření tepelného výkonu a tlakových ztrát výměníku se provedlo úvodní testování všech měřidel a zařízení. Po počáteční inicializaci byly postupně nastavovány zvolené pracovní body na straně vody a na straně vzduchu výměníku. Postupným odečítáním dat po 20 ti vteřinách z jednotlivých snímačů byl prováděn zápis dat do tabulek uvedených v příloze. Vždy po doměření daného pracovního bodu byla provedena hrubá kontrola naměřených dat proložením křivky, která ukázala dílčí odchylky. V případě, vysoké odchylky hodnot bylo měření pracovní bodu opakováno.

9.8. Vyhodnocení experimentálního měření

9.8.1. Součinitele přestupu tepla a tepelné výkony

Před zahájením samotného experimentálního měření byly navrženy 3 základní pracovní body, které umožňují simulovat reálných provoz výměníku ve stroji či zařízení. Pracovní bod je vždy definován nastavením rychlosti proudění vzduchu na straně vzduchu a příslušnému nastavení rychlosti proudění vody na straně vody. Jako vstupní teplota pro vzduchovou stranu byla stanovena teplota ve zkušebně, která se pohybovala řádově kolem 25 °C. Teplota vody byla ohřáta na požadovanou hodnotu 80 °C.

Na základě experimentálního měření byly změřeny 3 pracovní body, ke kterým jsou detailně popsány jednotlivé vstupní a výstupní veličiny. Ze vstupní a výstupních teplot a zadaných ostatních vstupních veličin byl dopočítán tepelný výkon výměníku Q. Z měření tlaků na trati před a za výměníkem byly změřeny tlakové ztráty, jak na straně vody, tak na straně vzduchu.

Na základě známé geometrie prázdného obdélníkového kanálu výměníku byl nejprve navržen hydraulický průměr D_{H_ch}

$$D_{H_ch} = \frac{4S}{o} = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b}$$
(85)

Pro výpočet Reynoldsova čísla byla využita rychlost proudění vody u_w , která byla známa jako jedna ze vstupních veličin

$$Re_w = \frac{u_w \cdot b}{v} \tag{86}$$

- 50 -

Následně bylo vypočteno Prandltovo číslo ze známých hodnot měrné tepelné kapacity vody c_{P_w} a dynamické viskozity μ_w určených z tabulek dle střední teploty

$$Pr_{w} = \frac{c_{P_{w}}.\mu_{w}}{\lambda_{w}}$$
(87)

Z vypočtených hodnot Reynoldsova a Pradltova čísla bylo získáno Graetzovo číslo

$$Gr_w = \frac{Re_w.Pr_w}{L_{ch}/D_{H_ch}} = \frac{u_w.D_{H_ch}^2}{a.L}$$
(88)

Dle Hausenova vztahu [1]

$$Nu_{w} = \frac{\alpha_{w} D_{H_{ch}}}{\lambda_{w}} = 6,82 + \frac{0,0668.Gr}{1+0,04.Gr^{2/3}}$$
(89)

bylo nejprve vypočítáno Nusseltovo číslo Nu pro dané proudění vody a následně byl vyjádřen součinitel přestupu tepla α_w .

$$Nu = \frac{\alpha_w D_{H_ch}}{\lambda_w} \Longrightarrow \alpha_w = \frac{Nu_w \lambda_w}{D_{H_ch}}$$
(90)

kde λ_w je součinitel tepelné vodivosti tekutiny.

Dracovní bod	u _w	Re _w	Gzw	Pr_{w}	D_{h_ch}	Vw	Nuw	ΔP_w	α_w
	[m.s ⁻¹]	[-]	[-]	[-]	[m]	[m ² .s ⁻¹]	[-]	[Pa]	[W.m ⁻² .K ⁻¹]
WP1	0,1	664	15				8	195	1118
WP2	0,1	1306	29	2	4,6.10 ⁻³	0,4.10 ⁻⁶	8	893	1208
WP3	0,2	1950	44				9	2107	1286

Tab. 14: Dopočítané hodnoty pro stranu vody u výměníku bez vířiče

Z výkresové dokumentace byly spočítány teplosměnné plochy strany vzduchu S_{T_out} a strany vody S_{T_in} . Z literatury [5] byla určena účinnost žebra vlnovce η

Dominik Buben

$$\eta = \frac{tgh\xi}{\xi} \tag{91}$$

$$\xi = 2.\sqrt{Bi}.\frac{F_H}{F_T} \tag{92}$$

$$Bi = \frac{\alpha_a \frac{F_T}{2}}{\lambda_a}$$
(93)

kde ξ je parametr žebrování, F_h výška vlnovce, F_t tloušťka vlnovce, λ_a součinitel tepelné vodivosti vzduchu, *Bi* Biotonovo číslo, α_a součinitel přestupu tepla.

Dále byly spočítány dle literatury [1] jednotlivé tepelné kapacity průtoků výměníku. Dle Žitného je dále spočítána teoretická hodnota výkonu Q_{max} , která je považovaná za ideální.

Experimentálním měřením získané výstupní teploty na straně vody a vzduchu byly využity pro výpočet jednotlivých výkonů dle vztahu

$$Q = m \,.\, c_P \,.\, \Delta t \tag{94}$$

kde m je hmotnostní průtok, c_P měrná tepelná kapacita, Δt rozdíl teplot.

Ze získaných hodnot výkonů byly dopočítány jednotlivé hodnoty účinnosti výměníku ε ze vztahu

$$\varepsilon = \frac{Q}{Q_{max}} \tag{95}$$

Dosazením vzorce pro výpočet součinitele prostupu tepla k

$$k = \frac{1}{\frac{S_{Tout}}{S_{Tin} \cdot \alpha_W} + \frac{p_T}{\lambda_{Al}} + \frac{1}{\eta} \cdot \alpha_a}$$
(96)

obsahující hledanou proměnnou součinitele přestupu tepla α_a do rovnice pro výpočet bezrozměrného parametru NTU symbolizující velikost výměníku

$$NTU = \frac{S_{Tout} \cdot k}{W_{min}} \tag{97}$$

Který figuruje ve vztahu pro účinnost výměníku využívaný v ε -NTU metodě

$$\varepsilon = 1 - e^{\left(\frac{NTU^{0,22}}{W} \cdot \left[e^{(-W.NTU^{0,78}) - 1}\right]\right)}$$
(98)

Hodnota součinitele přestupu tepla na straně vzduchu α_a byla iteračně dosazována do vztahů pro výpočet ε -NTU metodu, dokud navrhovaný výkon neodpovídal stanovenému výkonu z experimentálního měření daného pracovního bodu s požadovanou odchylkou. Touto metodou byly získány hodnoty součinitele přestupu tepla i v dalších pracovních bodech. Nalezené hodnoty α_a byly vyneseny do grafu čímž byla získána funkční závislost popisující závislost na rychlosti proudění vzduchu přes daný výměník tepla.

Výsledná funkční závislost součinitel přestupu tepla na rychlosti proudění byla získána proložením získaných hodnot iterací s rychlostí proudění v daném bodě.

Obr. 22.: Závislost součinitele přestupu tepla α_a na rychlosti proudění u_a

Získaná závislost součinitele přestupu tepla α_a na rychlosti proudění vzduchu u_a na straně vzduchu je

$$\alpha_a = 24,23. \, u_a^{(0,966)} \tag{99}$$

Dracovní bod	V_{a_z}	Ua	Rea	$D_{h_{f}}$	Va	ΔP_{a}	α _a
	[m ³ .h ⁻¹]	[m.s⁻¹]	[-]	[m]	[m ² .s ⁻¹]	[Pa]	[W.m ⁻² .K ⁻¹]
WP1	942	1,8	357			16	42
WP2	2891	3,6	719	3 <i>,</i> 6.10 ⁻³	1,8.10 ⁻⁵	49	83
WP3	2846	5,5	1098			96	122

Tab. 15: Dopočítané hodnoty na základě iterace součinitele přestupu tepla α_a u výměníku bez vířiče

Tab. 16: Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku bez vířiče

	S_{Tout_f}	S_{Tout_ch}	S _{Tout}	S _{Tin}	λ	k
Pracovili bou	[m ²]	[m ²]	[m ²]	[m ²]	[W.m ⁻¹ .K ⁻¹]	[W.m ⁻² .K ⁻¹]
WP1						34
WP2	10,1	2,7	12,8	2,2	237	58
WP3						76

Tab. 17: Dopočítané hodnoty tepelných kapacit proudů a tepelných výkonů u výměníku bez vířiče

Pracovní bod	W	Ww	Wa	NTU	Q _{max}	З	Q
FIACOVIII DOU	[W.K ⁻¹]	[W.K ⁻¹]	[W.K⁻¹]	[-]	[kW]	[-]	[kW]
WP1	0,2	1155	279	1,58	15,19	0,75	11,19
WP2	0,3	2272	561	1,32	30,91	0,68	21,02
WP3	0,3	3393	846	1,16	46,89	0,64	29,84

Součinitel přestupu tepla α_w pro výměník s vířičem byl získán opačným postupem, než je tomu u výměníku bez vířiče. Součinitelé přestupu tepla na straně vzduchu α_a se převzaly z prvního návrhu iteracemi a do výpočtové rovnice pro ε -NTU metodu byly v rámci druhého výměníku iteracemi hledány součinitelé přestupu tepla α_w pro výměník s vířičem

Tab. 18: Dopočítané hodnoty na základě iterace součinitele přestupu tepla α_w u výměníku s vířičem

Dracovní bod	u _w	Rew	Gzw	Pr_{w}	D_{h_ch}	Vw	α_w
Pracovni bou	[m.s ⁻¹]	[-]	[-]	[-]	[m]	[m ² .s ⁻¹]	[W.m ⁻² .K ⁻¹]
WP1	0,1	617	14				1892
WP2	0,1	1229	29	2	4,6.10 ⁻³	0,4.10 ⁻⁶	2007
WP3	0,2	1828	43				2675

Dracovní hod	S_{Tout_f}	$S_{\text{Tout_ch}}$	S_{Tout}	S _{Tin}	λ	k
	[m²]	[m ²]	[m²]	[m²]	[W.m ⁻¹ .K ⁻¹]	[W.m ⁻² .K ⁻¹]
WP1						39
WP2	10,1	2,7	12,8	2,2	237	72
WP3						103

 Tab. 19: Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku s vířičem

Tab. 20: Dopočítané hodnoty pro stranu vzduchu u výměníku s vířičem

Dracovní hod	V _{a_z}	Ua	Rea	$D_{h_{f}}$	Va	ΔP	α _a
Pracovni bou	[m ³ .h ⁻¹]	[m.s ⁻¹]	[-]	[m]	[m ² .s ⁻¹]	[Pa]	[W.m ⁻² .K ⁻¹]
WP1	939	1,8	361			19	43
WP2	1884	3,6	725	3,6.10 ⁻³	1 <i>,</i> 8.10 ⁻⁵	58	84
WP3	2830	5,5	1088			110	125

Tab. 21: Dopočítané hodnoty tepelných kapacit proudů a tepelných výkonů u výměníku s vířičem

Dracovní bod	W	Ww	Wa	NTU	Q _{max}	ε	Q
Pracovni bou	[W.K ⁻¹]	[W.K ⁻¹]	[W.K ⁻¹]	[-]	[kW]	[-]	[kW]
WP1	0,2	1148	278	1,8	15,23	0,78	11,84
WP2	0,2	2290	559	1,7	30,36	0,75	22,81
WP3	0,2	3406	840	1,2	46,29	0,73	33,81

Dle [1] je získaná závislost součinitele přestupu tepla α_w na rychlosti proudění vody u_w na straně vzduchu výměníku s vířičem vyjádřena

$$\alpha_w = 1660. \, u_w^{(0,141)} \tag{100}$$

Obr. 23.: Závislost součinitele přestupu tepla α_w na rychlosti proudění u_w

Dominik Buben

9.8.2. Tlakové ztráty

V každém pracovním bodě se současně měřila tlaková ztráta na straně vody před a za výměníkem. Funkční závislost byla získána proložením hodnot rychlostí proudění v pracovních bodech s odpovídajícími tlakový ztrátami. V prvním případě jde o výměník bez vířičů, kde byl snímači měřen statický tlak na straně vody před a za výměníkem. Nejedná se tedy o ztráty pouze pro navrhovanou geometrii sítě výměníku, ale o celkové ztráty sítě, komor a přívodů.

Obr. 24.: Závislost tlakové ztráty Δp_w na rychlosti proudění u_w u výměníku bez vířiče

Na základě experimentálně získaných hodnot výměníku bez vířiče je vyjádřena závislost tlakové ztráty Δp_w na rychlosti proudění u_w v systému dle [1] rovnicí

$$\Delta p_w = 119597. \, u_w^{(2,213)} \tag{101}$$

Na základě experimentálně získaných hodnot výměníku s vířičem je vyjádřena závislost tlakové ztráty Δp_w na rychlosti proudění u_w v systému dle [1] rovnicí

$$\Delta p_w = 134182. \, u_w^{(2,259)} \tag{102}$$

Obr. 25.: Závislost tlakové ztráty Δp_w na rychlosti proudění u_w u výměníku s vířičem

Závislost pro tlakovou ztrátu na straně vzduchu charakterizující ztrátu průchodem vlnovcem je

$$\begin{array}{c}
120\\
100\\
80\\
60\\
40\\
20\\
0,00\\
1,00\\
2,00\\
3,00\\
4,00\\
5,00\\
6,00\\
u_{a}[m.s^{-1}]
\end{array}$$

$$\Delta p_a = 7,72. \, u_a^{(1,52)} \tag{103}$$

Obr. 26.: Závislost experimentálně změřené tlakové ztráty Δp_a na rychlosti proudění u_a

9.8.3. Statistika vyhodnocení dat

Výsledné experimentální hodnoty výkonů a tlakových ztrát se vypočtou jako aritmetický průměr naměřených hodnot a určí se meze 95 %-ního intervalu spolehlivosti konstanty C dle vztahu

$$C = \frac{\sum_{i=1}^{m} (Q_i, \Delta p_{a_i}, \Delta p_{w_i})}{m} \pm \frac{s_{c.t(m-1).0,05}}{\sqrt{m}}$$
(104)

$$CI = \frac{s_{c.t(m-1).0,05}}{\sqrt{m}}$$
(105)

kde *CI* je interval spolehlivosti, $t_{(m-1).0,05}$ je kritická hodnota Studentova rozdělení pro (m-1) stupně volnosti a α = 0,05

$$s_{c} = \sqrt{\frac{1}{m-1} \left[\sum_{i=1}^{m} (Q_{i}, \Delta p_{a_{i}}, \Delta p_{w_{i}})^{2} - \frac{1}{m} \cdot \left(\sum_{i=1}^{m} (Q_{i}, \Delta p_{a_{i}}, \Delta p_{w_{i}}) \right)^{2} \right]}$$
(106)

kde s_c je směrodatná odchylka, m je počet měření(m = 60). [14]

	Q					Δp_{a}		Δp _w			
		Střední hodnota [W]	s _c [-]	CI [W]	Střední hodnota [Pa]	s _c [-]	CI [Pa]	Střední hodnota [Pa]	s _c [-]	CI [Pa]	
ıík iče	WP1	11191	36,5	9,43	19	0,1	0,03	195	28,7	7,40	
měr : víř	WP2	21020	102,1	26,39	56	0,3	0,06	893	86,1	22,20	
Vý bez	WP3	29836	138,5	35,78	106	0,5	0,13	2107	110,3	28,50	
ik m	WP1	12351	43,8	11,32	19	0,1	0,03	193	36,2	9,40	
měn ířiče	WP2	24070	69,4	17,92	58	0,3	0,06	873	88,0	22,70	
Vý s v	WP3	34644	70,5	18,21	110	0,5	0,14	2213	118,6	30,60	

Tab. 22: Statistické vyhodnocení tepelných výkonů, tlakových ztrát na straně vzduchu a na straně vody
10. Porovnání experimentálních a vypočtených dat

10.1. Výměník bez vířiče

Hodnoty vstupních teplot vody T_{w_in} , hmotnostního průtoku vody m_w nastaveny při experimentu byly využity také jako vstupní data pro výpočet. Výsledné hodnoty součinitelů přestupu tepla na straně vody $\alpha_w v$ prázdném kanálu získané na základě experimentálního měření a výpočtu mají odchylku v pracovním bodě WP1 0,17 %, v pracovním bodě WP2 0,2 % a v pracovním bodě WP3 0,1 %.

Hodnoty vstupních teplot T_{a_in} a objemových průtoků V_a byly pro výpočet opět převzaty z nastavených dat experimentálního měření. Hodnoty součinitelů přestupu tepla na straně vzduchu α_a mají v rámci experimentálního měření a výpočtu odchylku v pracovním bodě WP1 23,6 %, v pracovní bodě WP2 6,1 %, v pracovním bodě WP3 23,8 %. Odchylky jsou způsobeny přesností metody určení součinitele přestupu tepla α_a v rámci korelace Chang & Wang [10], která uvádí přesnost určení hodnot součinitele do 25 % v závislosti na dané geometrii vlnovce.

Výsledné hodnoty výkonů získaných na základě experimentálního měření a výpočtu mají v pracovním bodě WP1 odchylku 10 %, v pracovní bodě WP2 0,5 %, v pracovním bodě WP3 6 %. Nejpřesnější určení hodnot výpočtem vybranou metodou(korelací) Chang & Wang [10] je tedy v okolí pracovní bodu WP2 tedy při objemovém průtoku 1802 m³. h⁻¹.

			Výměn	ník bez ví	řiče			
nact	ovoná a	naměřaná data	E	xperimer	nt		Výpočet	
Hast	.avena a	namerena uata	WP1	WP2	WP3	WP1	WP2	WP3
	T_{w_in}	[°C]	79,6	80,3	80,5	79,6	80,3	80,5
	T_{w_out}	[°C]	69,5	70,7	71,4	68,8	69,3	72,2
γþα	ΔT_{w}	[K]	10,0	9,6	9,1	10,8	11,0	8,3
ονε	T _{stř_w}	[°C]	74,5	75,5	75,9	74,2	74,8	76,4
ana	m _w	[kg.s⁻¹]	0,28	0,54	0,81	0,28	0,54	0,81
Stra	uw	[m.s ⁻¹]	0,06	0,11	0,17	0,06	0,11	0,16
	Δp_w	[Pa]	195	893	2107	-	-	-
	α_w	[W.m ⁻² .K ⁻¹]	1118	1208	1286	1120	1210	1287
	$\begin{array}{c c} T_{st\check{r}_w} \\ \hline m_w \\ \hline u_w \\ \hline \Delta p_w \\ \hline \alpha_w \\ \hline T_{a_in} \\ \hline T_{a_out} \\ \hline \Delta T_a \\ \hline T_{st\check{r}_a} \\ \hline m_a \end{array}$	[°C]	25,2	25,2	25,1	25,2	25,2	25,1
	T_{a_out}	[°C]	62,0	59,5	57,5	67,4	60,9	56,7
hu	ΔT_{a}	[K]	36,8	34,3	32,4	42,3	35,8	31,6
quc	T _{stř_a}	[°C]	43,6	42,3	41,3	46,3	43,1	40,9
NZ(ma	[kg.s ⁻¹]	0,29	0 <i>,</i> 58	0,88	0,29	0,58	0,88
ana	V_{a}	[m ³ .h ⁻¹]	898	1802	2718	898	1802	2718
Str	Ua	[m.s ⁻¹]	1,09	2,19	3,34	1,72	3,44	5,19
	Δp_{a}	[Pa]	19	54	103	16	49	96
	α _a	[W.m ⁻² .K ⁻¹]	42	83	126	55	78	96
	Q	[kW]	11,19	21,02	29,84	12,43	21,13	28,05

Tab. 23: Porovnání experimentálně získaných a vypočtených dat pro výměník bez vířiče

Obr. 27.: Porovnání výkonů stanoveného experimentem a výpočtem v pracovní bodě WP1, WP2, WP3 - výměník bez vířiče

Na Obr. 28. je zobrazené porovnání závislostí tlakových ztrát Δp_a na rychlosti proudění u_a na straně vzduchu stanovených experimentem a výpočtem. Odchylka hodnot tlakových ztrát Δp_a stanovených experimentem a výpočtem v pracovním bodě WP1 je 15,8 %, v pracovním bodě WP2 9,3 % a v pracovním bodě WP3 6,8 %.

Obr. 28.: Porovnání závislostí tlakových ztrát Δp_a na rychlosti proudění u_a na straně vzduchu stanovených experimentem a výpočtem u výměníku bez vířiče

10.2. Výměník s vířičem

Hodnoty vstupních teplot vody $T_{w_{in}}$, hmotnostních průtoků vody m_w , které byly nastaveny při experimentu byly využity jako vstupní data pro výpočet.

Výsledné hodnoty součinitelů přestupu tepla na straně vody $\alpha_w v$ kanálu s vířiči získané na základě experimentálního měření a výpočtu mají odchylku v pracovním bodě WP1 18,9 %, v pracovním bodě WP2 25,3 % a v pracovním bodě WP3 8,8 %. Odchylky hodnot součinitele přestupu tepla α_w jsou způsobeny vybraným matematickým modelem geometrie vířiče, který je popsán v literatuře [5].

Hodnoty vstupních teplot T_{a_in} a objemového průtoku V_a byly pro výpočet opět převzaty z nastavených dat experimentálního měření. Hodnoty součinitele přestupu tepla na straně vzduchu α_a mají v rámci experimentálního měření a výpočtu stejnou odchylku v pracovním bodě WP1 23,6 %, v pracovní bodě WP2 6,1 %, v pracovním bodě WP3 23,8 %. Odchylky jsou způsobeny přesností metody určení součinitele přestupu tepla v rámci korelace Chang & Wang [10], která uvádí přesnost určení hodnot součinitele do 25 % v závislosti na dané geometrii vlnovce.

Výsledné hodnoty výkonů získaných na základě experimentálního měření a výpočtu mají v pracovním bodě WP1 odchylku 9,2 %, v pracovní bodě WP2 odchylku 1,5 % a v pracovním bodě WP3 odchylku 8,6 %. Nejpřesnější určení hodnot výpočtem vybranou metodou Chang & Wang [10] je tedy v okolí pracovní bodu WP2 tedy při objemovém průtoku 1796 m³. h⁻¹.

			Výměr	ník s vířič	em			
nact	ovoná a	naměřaná data	E	xperimer	nt		Výpočet	
Hast	avena a	namerena uata	WP1	WP2	WP3	WP1	WP2	WP3
	T_{w_in}	[°C]	80,1	79,4	80,2	80,1	79,4	80,2
	T_{w_out}	[°C]	69,4	68,6	69,8	68,8	64,5	71,2
dγ	ΔT_{w}	[K]	10,7	10,9	10,5	11,4	15,0	9,0
0 1	T _{stř_w}	[°C]	74,8	74,0	75,0	74,5	72,0	75,7
ana	m _w	[kg.s⁻¹]	0,27	0,55	0,81	0,27	0,55	0,81
Str	u _w	[m.s ⁻¹]	0,05	0,10	0,15	0,06	0,11	0,16
	Δp_w	[Pa]	193	873	2213	-	-	-
	α_w	[W.m ⁻² .K ⁻¹]	1892	2007	2675	2333	2688	2932
	T_{a_in}	[°C]	25,2	25,1	25,1	25,2	25,1	25,1
	T_{a_out}	[°C]	67,6	64,9	63,4	69,8	63,3	60,0
hu	ΔT_{a}	[K]	42,4	39,7	38,2	44,5	38,2	34,9
quc	T _{stř_a}	[°C]	46,4	45,0	44,2	47,5	44,4	42,6
ZV	ma	[kg.s ⁻¹]	0,29	0,58	0,87	0,29	0,58	0,87
ane	Va	[m ³ .h ⁻¹]	892	1796	2699	892	1796	2699
Str	Ua	[m.s ⁻¹]	1,10	2,21	3,31	1,70	3,43	5,16
	Δp_{a}	[Pa]	19	58	110	16	49	94
	αa	[W.m ⁻² .K ⁻¹]	43	84	125	55	78	96
	Q	[kW]	11,84	22,80	33,65	13,04	22,46	30,77

Tab. 24: Porovnání experimentálně získaných a vypočtených dat pro výměník s vířičem

Obr. 29.: Porovnání výkonů stanoveného experimentem a výpočtem v pracovní bodě WP1, WP2, WP3 - výměník s vířičem

Na Obr. 30. je zobrazené porovnání závislostí tlakových ztrát Δp_a na rychlosti proudění u_a na straně vzduchu stanovených experimentem a výpočtem. Odchylka hodnot talkových ztrát Δp_a stanovených experimentem a výpočtem v pracovním bodě WP1 je 15,8 %, v pracovním bodě WP2 je 15,5 % a v pracovním bodě WP3 je 14,5 %.

Obr. 30.: Porovnání závislostí tlakových ztrát Δp_a na rychlosti proudění u_a na straně vzduchu stanovených experimentem a výpočtem u výměníku s vířičem

10.3. Porovnání výměníků

Předpoklad při umístění vířiče do kanálu výměníku je zvýšení intenzifikace tepla, které vede ke zvýšení tepelného výkonu Q výměníku [5]. Vliv intenzifikace tepla způsobený vložením vířiče do kanálu výměníku zapříčinil zvýšení tepelného výkonu v pracovním bodě WP1 o 9,4 %, v pracovním bodě WP2 o 12,7 % a v pracovním bodě WP3 o 13,9 %. Na základě získaných výsledků byla ověřena teorie, že při vyšších rychlostech proudění tekutiny dochází k intenzivnějšímu přestupu tepla a tím ke zvyšování chladicího výkonu výměníku.

Obr. 31.: Porovnání výkonů stanovených experimentem výměníku bez vířiče a výměníku s vířičem

Na Obr. 32 je zobrazeno porovnání závislostí tlakových ztrát Δp_w na rychlosti proudění na straně vody u výměníku bez vířiče a výměníku s vířičem. Na základě porovnání závislostí je patrné, že se vliv vložení vířiče při nižších rychlostech proudění výrazně neprojeví. Při zvyšování rychlosti proudění u_w dochází k nárůstu tlakové ztráty Δp_w v kanále s vířičem.

Obr. 32.: Porovnání závislostí tlakových ztrát Δp_w na rychlosti proudění u_w na straně vody u výměníku bez vířiče a výměníku s vířičem

Dominik Buben

11. Závěr

V první části diplomové práce je popsána modifikace všeobecných teoretických výpočtů na specifické vztahy popisující výměník "plate & bar". V teoretické části je také popsán vliv geometrie vlnovce s prostřihem, který je popsán dle korelace Chang & Wang [10]. Po zjištění závislosti popisující vliv vlnovce na součinitel přestupu tepla a tlakové ztráty na straně vzduchu popsaného Colburnovým faktorem a Fannigovo frikčním faktorem byl následně proveden teoretický výpočet. Dle modifikovaného vztahu Hausenovy korelace pro obdélníkové profily byl stanoven součinitel přestupu tepla prázdného kanálu na straně vody. Dále byly na základě získaných přestupů tepla výpočtem stanoveny výkony v jednotlivých pracovních bodech.

V dalším kroku byl popsán vliv vířiče uvnitř kanálu na straně vody na intenzifikaci přestupu tepla a s tím související nárůst tepelného výkonu. V případě teoretického výpočtu druhého etalonu nebylo potřeba zjišťovat parametry strany vzduchu, protože ta byla u obou výměníků naprosto geometricky identická. Součinitelé přestupu tepla na straně vzduchu byly převzaty a byl zjišťován pouze vliv vířiče v kanálu. Výpočet součinitele přestupu tepla ovlivněného vířičem byl navržen dle [5] jako výpočet statických směšovačů. Po dokončení teoretického výpočtu druhého etalonu bylo na výsledcích výkonů značné zlepšení v případě vložení vířiče.

V druhé části bylo provedeno experimentální měření, jehož cílem bylo získat hodnoty pro navržení jednotlivých součinitelů přestupu tepla na straně vody i vzduchu. Nejprve bylo provedeno vyhodnocení měření výměníku bez vířiče. V první fázi vyhodnocení byl na základě naměřených dat spočítán součinitel přestupu tepla na straně vody. V tomto případě se jednalo o výpočet opět podle Hausenovy korelace, kde výsledek určil základní hodnotu součinitele. Následovalo experimentální zjištění součinitele přestupu tepla na straně vzduchu pomocí iterací. Na základě získaných výkonů výměníku v jednotlivých bodech experimentálního měření byla hledána hodnota součinitele přestupu tepla pro nejmenší možnou odchylku v rámci stanoveného výkonu měřením. Získané hodnoty byly proloženy křivkou, a tím byla vytvořena funkční závislost součinitele přestupu tepla pro vlnovec s prostřihem na rychlosti proudění vzduchu.

V druhém měření etalonu s vířičem již byl znám vliv součinitele přestupu tepla na straně vzduchu z předchozího měření, proto byl postup obrácený. Na základě určených pracovních bodů a k nim odpovídajících rychlostí proudění byly iterací zjištěny hodnoty součinitele přestupu tepla na straně vody v kanálu s vířičem. Získané hodnoty byly vyneseny do grafu a proloženy křivkou, čímž vznikla funkční závislost součinitele přestupu tepla na straně vody v kanálu s vířičem na rychlosti proudění vody.

Vypočtené teoretické hodnoty výkonů obou etalonů byly porovnány s experimentálně

získanými hodnotami výkonů. U výměníku s vířičem se odchylka určení tepelných výkonů mezi teorií a experimentem pohybuje od 5,29 do 11,17 %. U výměníku bez vířiče se odchylka určení tepelných výkonů obou metod pohybuje od 0,52 do 9,98 %.

Porovnáním experimentálně zjištěných teplených výkonů výměníku s a bez vířiče byl potvrzen kladný vliv vířiče na intenzifikaci přestupu tepla, a tím zvýšení tepelného výkonu o 9,39 až 13,89 % v měřeném rozsahu. V teoretickém výpočtu byly také vypočítány na základě korelace Chang & Wang [10] tlakové ztráty vlnovce s prostřihem, které byly následně porovnány s experimentálně zjištěnými tlakovými ztrátami na straně vzduchu. Tlakové ztráty na straně vody byly experimentálně změřeny, avšak v rámci teoretického výpočtu nebylo možné určit velikost dílčích tlakových ztrát přívodů a komor výměníku.

12. Seznam obrázků

Obr. 1.	a) Souproudý průchod médií, b) Protiproudý průchod médi, c) Křížový průchod médií5-
Obr. 2.	Síť skládaného chladiče "plate & bar"6-
Obr. 3.	Síť chladiče složeného z tenkostěnných trubek6-
Obr. 4.	Síť chladiče složeného z žebrovaných7-
Obr. 5.	Síť chladiče složeného z MPE trubek7-
Obr. 6.	Řez výměníkem "plate & bar"8-
Obr. 7.	Profil vlnovce9-
Obr. 8.	Typy konstrukcí vlnovců10-
Obr. 9.	Profil dynamopásu10-
Obr. 10.	Profil lišty11-
Obr. 11.	Profil mezistěny11-
Obr. 12.	Profil vířiče12-
Obr. 13.	Výrobní cyklus výměníku "plate & bar"13-
Obr. 14.	Profil vířiče22-
Obr. 15.	a) Pohled v řezu na vlnovec s prostřihem, b) Čelní pohled na vlnovec s prostřihem25-
Obr. 16.	Detail prostřihu ve vlnovci26-
Obr. 17.	Detail vlnovce s prostřihem26-
Obr. 18.	Skládaný výměník "plate & bar" -Etalon32-
Obr. 19.	Skládaný výměník "plate & bar" – etalon33-
Obr. 20.	Měřicí trať46-
Obr. 21.	Schéma měřicí trati47-
Obr. 22.	Závislost součinitele přestupu tepla $lpha_a$ na rychlosti proudění u_a
Obr. 23.	Závislost součinitele přestupu tepla $lpha_w$ na rychlosti proudění u_w
Obr. 24.	Závislost tlakové ztráty Δp_w na rychlosti proudění $ u_w$ u výměníku bez vířiče56-
Obr. 25.	Závislost tlakové ztráty Δp_w na rychlosti proudění $ u_w$ u výměníku s vířičem57-
Obr. 26.	Závislost experimentálně změřené tlakové ztráty Δp_a na rychlosti proudění u_a 57-
Obr. 27.	Porovnání výkonů stanoveného experimentem a výpočtem v pracovním bodě WP1, WP2, WP3 – výměník bez vířiče60-

Obr. 28.	Porovnání závislostí tlakových ztrát Δp_a na rychlosti proudění u_a na straně vzduchu stanovených experimentem a výpočtem u výměníku bez vířiče	-60-
Obr. 29.	Porovnání výkonů stanoveného experimentem a výpočtem v pracovní bodě WP1, WP WP3 - výměník s vířičem	2, 62-
Obr. 30.	Porovnání závislostí tlakových ztrát Δp_a na rychlosti proudění u_a na straně vzduchu stanovených experimentem a výpočtem u výměníku s vířičem	-62-
Obr. 31.	Porovnání výkonů stanovených experimentem výměníku bez vířiče a výměníku s vířičem	-63-
Obr. 32.	Porovnání závislostí tlakových ztrát Δp_w na rychlosti proudění na straně vody u_w u výměníku bez vířiče a výměníku s vířičem	63-

13. Seznam tabulek

Tab. 1.	Asymptotické hodnoty Nusseltova čísla pro obdélníkový profil kanálu	20-
Tab. 2.	Zadané vstupní parametry	-31-
Tab. 3.	Reálné vstupní parametry nastavené v rámci experimentu	-32-
Tab. 4.	Parametry skládaného výměníku "plate & bar" – etalon	33-
Tab. 5.	Dopočítané hodnoty pro stranu vody u výměníku bez vířiče	-38-
Tab. 6.	Dopočítané hodnoty pro stranu vzduchu u výměníku bez vířiče	-40-
Tab. 7.	Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku bez vířiče	-41-
Tab. 8.	Dopočítané hodnoty tepelných kapacit průtoků a tepelných výkonů u výměníku bez vířiče	-42-
Tab. 9.	Dopočítané hodnoty pro stranu vody u výměníku s vířičem	-44-
Tab. 10.	Dopočítané hodnoty pro stranu vzduchu u výměníku s vířičem	44-
Tab. 11.	Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku s vířičem	-45-
Tab. 12.	Dopočítané hodnoty tepelných kapacit proudů a tepelných výkonů u výměníku s vířičem	45-
Tab. 13.	Seznam měřicích zařízení	-48-
Tab. 14.	Dopočítané hodnoty pro stranu vody u výměníku bez vířiče	-51-
Tab. 15.	Dopočítané hodnoty na základě iterace součinitele přestupu tepla u výměníku bez vířiče	-54-
Tab. 16.	Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku bez vířiče	-54-
Tab. 17.	Dopočítané hodnoty tepelných kapacit proudů a tepelných výkonů u výměníku bez vířiče	54-
Tab. 18.	Dopočítané hodnoty na základě iterace součinitele přestupu tepla $lpha_w$ u výměníku be vířiče…	z 54-
Tab. 19.	Dopočítané hodnoty teplosměnných ploch a prostupu tepla u výměníku s vířičem	55-
Tab. 20.	Dopočítané hodnoty pro stranu vzduchu u výměníku s vířičem	-55-
Tab. 21.	Dopočítané hodnoty tepelných kapacit proudů a tepelných výkonů u výměníku s vířičem	55-
Tab. 22.	Statistické vyhodnocení tepelných výkonů, tlakových ztrát na straně vzduchu a na str vody	aně -58-

- Tab. 24. Porovnání experimentálně získaných a vypočtených dat pro výměník s vířičem.....-61-

14. Seznam symbolů a označení

x	délka kanálu	[m]
у	výška kanálu	[m]
b	šířka lišty	[m]
Bi	Bitonovo číslo	[-]
С	délka základny vlnovce	[m]
C _P	měrná tepelná kapacita	[J.kg ⁻¹ .K ⁻¹]
d	dynamopás	[m]
d_f	délka vlny na jednotku rozteče	[m]
d_L	délka dynamopásu	[m]
d_w	šířka dynamopásu	[m]
D _{H_ch}	hydraulický průměr kanálu	[m]
D_{H_f}	hydraulický průměr vlnovce	[m]
F	vlnovec	[m]
F _d	hloubka vlnovce	[m]
Gr	Grasshofovo číslo	[-]
Gz	Graetzovo číslo	[-]
j	Colburnův faktor	[-]
k	součinitel prostupu tepla	[W.m ⁻² .K ⁻¹]
L	prostřih vlnovce	[m]
L _a	úhel prostřihu vlnovce	[°]
L _p	rozteč prostřihu	[m]
L _{ch}	charakteristický rozměr	[m]
L _l	délka prostřihu vlnovce	[m]
'n	hmotnostní průtok	[kg.s ⁻¹]
n _{ch}	počet kanálů	[-]
n_p	počet vrcholů vlnovce v jednom modulu	[-]
n _{fin}	počet vlnovců výměníku	[-]
Nu	Nusseltovo číslo pro	[-]

NTU	Number of transfer unit	[-]
S	teplosměnná plocha	[m²]
0	obvod	[m]
p_T	tloušťka mezistěny	[m]
Pr	Pradltovo číslo	[-]
Q_{max}	maximální teoretický výkon výměníku	[kW]
Q	celkový výkon výměníku	[kW]
Re	Reynoldsovo číslo pro stranu vzduchu	[-]
Re _{lp}	Reynoldsovo číslo vztažené k rozteči prostřihu	[-]
S _c	celková teplosměnná plocha sítě výměníku	[m²]
S _n	celková náporová plocha sítě výměníku	[m²]
S _{Tout}	celková venkovní teplosměnná plocha	[m²]
S _{Tout_f}	celková venkovní plocha vlnovce	[m²]
S _{Tout_ch}	celková venkovní plocha kanálů	[m²]
t _s	výška modulu	[m]
t _m	tloušťka mezistěny kanálu	[m]
Т	teplota	[°C]
u	rychlost proudění vody	[m.s ⁻¹]
<i>॑</i> V	objemový průtok vzduchu	[m ³ .s]
<i>V</i> _{a₂}	objemový průtok vzduchu uvnitř vlnovce	[m ³ .s]
w _c	šířka sítě výměníku	[m]
Wa	tepelná kapacita průtoků na straně vzduchu	[W. K ⁻¹]
W_w	tepelná kapacita průtoků na straně vody	[W. K ⁻¹]
W	poměr tepelných kapacit	[-]

Řecká písmena

α	součinitel přestupu tepla	[W.m ⁻² .K ⁻¹]
ξ	parametr žebrování	[-]
μ_a	dynamická viskozita vzduchu	[Pa.s]
μ_w	dynamická viskozita vody	[Pa.s]

Dominik Buben

λ	součinitel tepelné vodivosti	[W.m ⁻¹ .K ⁻¹]
ν	kinematická viskozita	[m ² .s ⁻¹]
ρ	hustota vody	[kg.m ³]
η	účinnost žebra vlnovce	[-]
ε	účinnost výměníku	[-]

Index

а	strana vzduchu
Al	hliník
f	vlnovec
Н	výška
in_w	vstupní veličina strany vody
in_a	vstupní veličina strany vzduchu
Lp	veličina vztažená k rozteči prostřihu
l	délka
L	délka
out_w	výstupní veličina strany vody
out_a	výstupní veličina strany vzduchu
Ρ	rozteč
Т	tloušťka
W	strana vody
W	šířka

15. Literatura

- [1] HEMZAL, Karel. Přenosové jevy v technice prostředí. V Praze: Vydavatelství ČVUT, 2004. ISBN 80-01-02924-7
- [2] Shah, R.K, Dusan, P. and Sekulic, D.P, *Fundamental of Heat Exchanger Design*, New York: John Wiely & Sons, 2003.
- [3] THULUKKANAM, Kuppan. *Heat exchanger design handbook*. 2nd ed. Boca Raton, FL: CRC Press, 2013. ISBN 9781439842133.
- [4] Achaichia, A., Cowell, T. A., 1988, A Finite Difference Analysis of Fully Developed Periodic Laminar Flow in Inclined Louvered Arrays, 1988
- [5] ŠESTÁK, Jiří a Rudolf ŽITNÝ. Tepelné pochody II: výměníky tepla, odpařování, sušení,
 průmyslové pece a elektrický ohřev. Praha: Vydavatelství ČVUT, 1997. ISBN 80-01-01630-7
- [6] DAVENPORT, C.J., *Correlation for Heat Transfer and Flow Friction Characteristics of Louver Fin*, AIChE Symp. 225 (1983)
- [7] CHANG, Y. J., WANG, C. C., *A Generalized Heat Transfer Correlation for Louver Fin Geometry*, Int. J. Heat Mass Transfer, 40(3), pp. 1997, S0017-9310(96)00116-0
- [8] ŠESTÁK, J., RIEGER, F., *Přenos hybnosti, tepla a hmoty*, ČVUT, Praha 1993
- BULLARD, C.W. Kim, M.H., Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions, International journal of refrigeration, Elsevier, 2002, 25(2002) 924-934
- [10] CHANG, Y.J.- Wang, Ch., *A generalized heat transfer correlation for louver fin geometry*, International Journal of Heat and Mass Transfer, Pergamon, 1997, PII: S0017-9310(96)00116
- [11] KAYS, W. M. and London, A. L., Compact heat Exchangers, McGraw-Hill, New York (1984)
- [12] Aluminium plate-fin heat exchangers. Linde engineering [online]. [cit. 2020-05-01]. Dostupné z: https://www.linde-engineering.com/en/images/30160_LE_Manufacturing_PFHE_brochure _update_ RZ_VIEW_tcm19-406598.pdf
- [13] INCROPERA, Frank P.; DEWITT, David P. Fundamentals of Heat and Mass Transfer. 6th. vyd. Hoboken: Wiley, 2007. ISBN 978-0-471-45728-2. S. 490, 515.
- [14] Ambros, F., Dufek, M.: Experimentální metody (cvičení). Vyd. ČVUT, Praha 1991

16. Příloha A

Následující tabulky obsahují záznamy měřených veličin při experimentálním měření pro jednotlivé oba výměníky. Každý výměník má zaznamenaná veškerá potřebná data pro vyhodnocení vždy pro každý pracovní bod. Oba výměníky mají každý po třech pracovních bodech

														Т	1							Т		1		\top	Τ																T	T		Т	П		Τ		T	П	Т
	tlak. ztráta	Δp _{water}	[bar]	0,002	0,002	0,002	0,002	0,002	0.002	0,002	0,002	0,002		0,003	0.002	0,002	0,002	0,002	0,002	0,002	0 002	0.002	0,002	0,002	0,002	0,002 0,002	0.002	0,002	0,001	0,002	0,002	0,002	0,001	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0.002	0,002	0,002	0,001	0000	0.002	0,002	0,002	0,002	0,001	0.002	0,002	0,002
-	vody nrůtok	qV _{waterm}	[m]	16,95 16.05	16,95	16,95	16,95	16,95 16.05	16.95	16,95	16,95	16,95 16,05	10,45	16.95	16.95	16,95	16,95	16,95	16,95	10,95 16.05	16.95	16.95	16,95	16,95	16,95	16,95 16,95	16.95	16,95	16,95	16,95	16,95 16.05	16.95	16,95	16,95	16,95 16.05	16.95	16,95	16,95	16,95 16,05	16.05	16.95	16,95	16,95 10.05	16, YD	16.95	16.95	16,95	16,95	16,95	16,95 1 A O F	16.95	16,95	16,95
-	strana n/výstup	t _{2 water}	[°C]	69,55 60,53	69,57	69,5	69,56	69,59 60,56	69,58	69,58	69,54	69,61 e0 ee	00,50	69.59	69.57	69,61	69,54	69,58	69,6	60 E2	69.61	69.63	69,47	69,49	69,53	69,59 69.54	69.58	69,53	69,59	69,59	69,53 60,57	69 57	69,47	69,46	69,53 60,54	69.57	69,54	69,52	69,53	08,00 60 55	69.54	69,57	69,49 20,40	69,49 60.44	69,44	69.45	69,5	69,36	69,46	69,47 c0.46	69.44	69,55	69,51
	alatv vstu	t _{1 water}	[°]	79,59 70.6	79,57	79,58	79,57	79,6 70,6	79.59	79,58	79,6	79,59	10,81	79.58	79.59	79,58	79,6	79,58	79,6	10,81	79.59	79.58	79,58	79,6	79,55	79,59	79.58	79,58	79,58	79,58	79,57	79.55	79,58	79,57	79,57	79.58	79,54	79,54	79,54	10,81	79.53	79,51	79,53	70 E	79.52	79.52	79,51	79,47	79,52	79,49	79.5	79,53	79,53
-	k. ztráta te	r flow p	[Pa]	18,8 19.7	18,8	18,8	18,6	18,7	18.7	18,9	18,6	18,7	10,0	18.7	18.6	18,8	18,9	18,9	18,8	18,/	18.6	18.7	18,6	18,7	18,6	18,/ 18.9	18.7	18,6	18,7	18,7	18,9	18.6	18,9	18,8	18,7	18.8	18,7	18,6	18,8	18.7	18.6	18,7	18,6	19	18.7	18.7	18,6	18,7	18,6	18,7	10, / 18.6	18,8	18,7
	lonou fla	AP ai	mbar]																										C1088																			Ц					
	kv nřed c	RH	[%rH]																										40,4																								
	podmín	T,t lab	[°C]																										50,23																								
	a cloně	σ	[m ³ .h ⁻¹]																									000	020																								
	ametry no	ē	[Pa]																									\$	1																								
e	Dan	2 ApcL	[Pa]												Т							T				_		2	2 ¹ 00		_					Т			_					_		_			_	T	T		
ez vířič	lotv	Tin 12	[°]	25,2 25,2	25,1	25,1	25,3	25,3 75	55	25,1	25	25,1	20,4 25,4	25,4	25.1	25,1	25	25,1	25,2	25,3	25.3	25.2	25	25	25,2	25,1	25.2	25,1	25,2	25,1	25,1 25,2	22.2	25	24,9	25,1	25.6	25,5	25,3	25	25.4	25.5	25,4	25,2	7'07	25.4	25,3	25,2	25	25,2	25,2	25,2	25,3	25.2
ěník b	tunní ten	Tin 11	[°]	25,2 25,2	25,1	25	25,3	25,3 75	24.9	25	25	25	70,3 26,3	25,0	25	25,1	24,9	25	25	25,3	25.3	25.1	24,9	24,8	25,1	25.1	25.1	25	25,1	25	25 25 1	25.1	24,9	24,8	25,1	25.5	25,4	25,3	24,9	25.7	25.4	25,3	25,1	C2 25.30	25.3	25,2	25	24,9	25,1 25,1	25,1 25,1	25,1	25,2	25.1
Výn	vsduchu	Tin 10	ြင္	25,2 25,2	25,1	25,1	25,3	25,3 75	55	25,1	25	25,1	70,4	25,3	25.1	25,2	25	25,1	25,1	20,4	25.4	25.3	25	25	25,2	25,2	25.2	25,1	25,2	25,1	25,1 25.2	25.2	25	24,9	25,2	25.6	25,5	25,4	25	25.4	25.5	25,4	25,3	29,42	25.4	25,3	25,2	25	25,3	25,2	25,2	25,3	25.3
-	strana	Tout 09	[ံင]	46,3 46.3	46,3	46,2	46,2	46,3 46.2	40,3	46,2	46,2	46,2 46.4	40,4	40,4	46.3	46,3	46,3	46,2	46,3	40,4 46,4	40,4	46.4	46,3	46,3	46,3	46,3 46,4	46.5	46,4	46,4	46,4	46,3 46.3	40,0	46,3	46,4	46,3	46.4	46,4	46,5	46,5	40,0	46.5	46,5	46,5	46,4 46.5	40,0	46,6	46,5	46,6	46,6	46,6 46,6	40,0 46,6	46,6	46.7
		Tout 08	ြင္ခ	52,4 52,4	52,3	52,3	52,3	52,3	52.2	52,2	52,3	52,2	57.5	52.4	52.4	52,3	52,2	52,3	52,4	57,5 27,5	52.3	52.3	52,3	52,3	52,4	52,4 52.5	52.6	52,5	52,5	52,5	52,4 52,4	50.3	52,4	52,4	52,4 E7 E	52.6	52,6	52,6	52,6	0,26	52.4	52,5	52,5	52,0 57,7	1,26	52.8	52,7	52,8	52,8	52,9 E7 8	52.9	52,8	528
		Fout 07	[°C]	63,3 63,3	63,1	63,1	63,1	63,1 63,1	63.2 63.2	63,1	63,2	63,2 63,2	03,Z 62 1	63.3	63.3	63,2	63,1	63,2	63,2	63,3 62,3	63.1	63.2	63,2	63,2	63,3	63,3 63.4	63.3	63,2	63,4	63,3	63,3 63,3	63.2	63,2	63,3	63,3 63,3	63.4	63,4	63,4	63,4	63,3	63.2	63,3	63,4 2.7.7	63,5 e2 E	63.4	63.5	63,4	63,5	63,5 2.7.5	63,6 23,5	63.5	63,5	63.5
		out 06	[°C]	61,6 61 6	61,6	61,5	61,5	61,6 e1 e	61.5	61,6	61,6	61,5 e1 e	01,0	61.6	61.6	61,6	61,5	61,5	61,6	01,0 61 6	617	61.7	61,6	61,6	61,6	61,6 61,6	61.6	61,6	61,6	61,6	61,6 61 6	61.6 61.6	61,6	61,5	61,6 e1 e	61.6	61,7	61,7	61,6 e1 e	61.6 61.6	61.7	61,7	61,7	61,6 e1 e	61.6 61.6	61.6	61,6	61,5	61,5	61,6 61 e	61.6	61,6	616
	ní tenlotv	ut 05 T	<u>د</u> ا	65 65	4,9	4,9	14,9	65 eF	14.9	4,9	6,9	4,9	20	65	65	4,9	14,9	4,9	4,9	6 A	65	65	65	14,9	4,9	4,9 65	65	65	4,9	65	4,9	0 7	4,9	4,9	4,9	65	65	65	4,9	0 1 0	65	65	65	90	65 65	65	65	4,9	4,9	4,9	4 0 4 0	65	65
	výstup	rt 04 To	ם כו	8,4	8,3	3,3	3,3	8,4	8.3 6	8,3	3.3	8,3	, c , c	4,4	8.4	3,3 6	3,3	3,4		4 4	3.4	8.4	8,4	3,3	9 9 9 9	8,4 8,4	34	8,4	3,4 6	3,4	833 833	0,0	8.3	8,3 6	0 2 2 2	2,2	3,4	3,4	9,0	0 ° °	2.4	3,4	8,4		9 7 7	8.4	3,3	8,3	8,3	8 3 3 3 3	8.3 0,0	8,4	
		t 03 Tol	5	 0 0	00	õ	1		00	-	-	0 0 0	ō ū		0	1 6	õ	-	- 0	0 0 -		0	1	.0 0		- - - -		1	1.	1	ته ق م		0 0 0	0	0 0 0		1 6	1		5 0 -	- - -	1 6	500				1	0				1	-
		02 Tour	5	5 65 65	ы С С С С С	ů v	5 65	65 65		5 65	65	5 6 6	0 19	65	65	5 65	و	5	65	01	85	65	5 65	6	65	65	55	65	5 65	5 65	99 87 87 87 87 87 87 87 87 87 87 87 87 87	3 5	3 00	6	65	65 05	s 65	5 65			65	5 65	5 65		6 4 6 4 6 4 6	65	5 65	4		5 0 	5 00 + 10	5 65	65
		01 Tout	ີ	99 99	80	66	99	99 99	80	66.	99	99 99			99 90	66,	99	99	99	00	b B B B B B B B B B B B B B B B B B B B	99	66,	.99	99	00' 90'	80	66.	99	99	99		89	66,	99'e		66,	99	66	b g	8 8 9 9 9 9	66,	99			38	66.	.99	99	99	5 8 8 8	66	- 66
		Tout ([°C]	69,3 60,3	69'3 69'3	69,3	69,4	69,4	69.3 69.3	69,3	69,3	69,3	09,4	69,4	69.3	69,3	69,3	69,3	69,4	60,4	69,4	69.4	69,3	69,3	69,3	69,4 69,4	69.4	69,4	69,4	69,3	69,3	60 3 7 20 3	69,3	69,3	69,3	69.4	69,4	69,4	69,3	60,0	69.3	69,4	69,3	08,0	60.3	69,3	69,3	69,3	69,3	69,3	03,0 69,3	69,3	69.3
	prac. bot WP1	Čas	[h:mm:ss	00:00:0	0:00:40	0:01:00	0:01:20	0:01:40	0:02:20	0:02:40	0:03:00	0:03:20	0:03:40	0.04.00	0:04:40	0:05:00	0:05:20	0:05:40	0:00:00	07:90:0	0.07.00	0:07:20	0:07:40	0:08:00	0:08:20	0:08:40 0.09:00	0:09:20	0:09:40	0:10:00	0:10:20	0:10:40	0.11.00	0:11:40	0:12:00	0:12:20	0:13:00	0:13:20	0:13:40	0:14:00	0.14.20	0:15:00	0:15:20	0:15:40	0:10:00	0.10.20	0:17:00	0:17:20	0:17:40	0:18:00	0:18:20	0:19:00	0:19:20	0:19:40

	ak. ztráta	Ap water	[bar]	0,008	0,01	0.008	0,008	0,009	0,009	0,009	0.009	0,009	0,009	0,008	0,009	0.007	0.007	0,012	0,009	0,009	0,008	600 0		0,000	0,009	0,009	0,01	0,01	0,009	0,009	0,009	0,009	0,000	0,009	0,009	0,008	0,009	0 01	0,01	0,009	0,01	600 0	0,009	0,009	0,006	0,009	800'n	0,009	0,009	0,01	0,009	0,008	0,009	0,009	
	ody průtok tl	V waterm	[lm]	33,35	33,35 33,35	33.35	33,35	33,35 22,25	33,35 33 35	33.35	33.35	33,35	33,35	33,35 22,25	33,35	33,35	33.35	33,35	33,35	33,35	33,35	33,35 22 25	22,25 22,25	33.35	33.35	33.35	33,35	33,35	33,35	33,35	33,35	33,35 33,35	33 35	33,35	33,35	33,35	33,35	33,35	33,35	33,35	33,35 23,25	33.35	33,35	33,35	33,35	33,35 22,25	33,35	33,35	33,35	33,35	33,35 20,05	33,35	33,35	33,35	20 00
	strana v /výstup	t _{2 water} q	[°c]	70,7	70.62	70.66	70,72	70,71	70.72	70.76	70,77	70,72	70,67	70,67	70,66	70.7	70.7	70,68	70,69	70,68	/0/	70 73	C1,U1	70.65	70.61	70.73	70,8	70,69	70,65	70,63	70,59	70 B	70.50	70,69	70,84	70,64	70,63	70.6	70,6	70,68	70.62	70.61	70,57	70,62	70,59	70,64	70 6	70,57	70,49	70,59	70,62	70,59	70,63	70,56	10.01
	loty vstup	1 water	[°C]	30,29	30,29 80.3	80.3	30,29	80,3	50,31 20,31	80.3	80.3	30,31	30,31	80,3	50,31	30.31	80.3	30,31	30,31	80,3	80,3	80,3	87,00	30.28	30.29	30.29	30,28	30,27	30,26	30,27	30,26	30,27 20.27	20,26 20,26	30,27	30,26	30,26	30,25	30,26 30,25	30,26	30,26	50,25 20,25	30.25 30.25	30,25	30,25	30,24	30,24	00,40 20,26	30,25	30,25	30,25	30,25 20,25	30,25 30,25	80.23	30,23	000
ŀ	ztráta tep	low p t	Paj	6,3	6,2 56	5.8	5,7 8	20	6,4 7 4	67	5.7	6,1	6,1	5,5	8,9		2.9	5,8	5,8	6,1	6,1			20,0	61 61 61	6 1 0	20	5,8	6,1	2,9	200	2 4	2 4 2 4	202	56	6,5	20	55	6,1	6,2	2 4 2 4		6,3	6,1 8	6,2	6,1	2'/ 2'/	6,4	6,4 8	6,1 8	6,3	5,8 6.5	6.4	6,1 8	
	nou tlak.	P air 1	oar] [2	n.		S		л <u>ч</u>		0	LO LO	LO LO		20		מין		G	LO I	n							G	773 5			л <u>ч</u>	ייר			5				S.	Ω 4			S	G				ß	S			0	20	
	před clor	RH A	rH] [mt																										1 7 99																										
	odmínky	t lab R	°C] [%																										3 95 4'																										-
	ně po	σ	³ .h ⁻¹] [802 23																										
	ry na clo	þ,	Pa] [m																										169																										
	paramet	∆p _{cL}	[Pa] [43.9																										
ířiče		in 12	[°C]	25,2	24,9	5.4	25,3	25,2	25,4 25,6	5,7	25.6	25,4	25,2	25,2	25,1	55.3	5.5	25,2	25,1	25,2	25,3	0,0,0	1 1	25	5.1	22.5	25,5	25,5	25,3	25,1	25	24,9	54,9	25,4	25,4	25,2	24,9	51	25,1	24,9	20,2	51	25	25,1	25,1	25,4	5,0	25	24,9	25,1	25,2	25,1	25.2	25,4	
k bez v	teploty	11 T	c]	1,1	20	2.2	5,1	<u>ب</u>	N L	0, 9	5,4,0	5,2	5	5	6 T		14	-	6,1	<u> </u>	2.	4 C	<u>л</u> ц	0	0		4	5,4	5,2	20	, 1 00		0. u		5,3	1.	<u>∞</u> 1	61	6	8	0 J	- 61	8	5	6't	<u>د</u>	v u	6,1	t,7 2	2		5		5,3	
<u>ýmění</u> l	vstupni	10 Tin] [25	6	1	3 25			2 2	32	4 25	2	0			2 12 2 12	32	1 24	52			4 F	- 26	1	5	5	5	35	~	22	6		1 22	4 25	25	9	27	1	9		27	54	1	24	4 25		24	8 24	1	5 5	47 E	32	4 25	
5	a vzduch	9 Tin '	[°C	25,	24,	25.4	25,	22,	72 [,]	52.	25.0	25,	25,	25,	50'. 72	25,25	25.	25,	25,	25.	25,	70, 2, 0,	20'Y	2 ²	22	25.	25,	25,	25,	22,	22	24,	2 ⁴ ,	25,	25,	25,	24,5	24,0	25,	24,5	с, к С	22	25	25,	25	52 [°]	22,25	25	24,8	25,	25,	\$2, 25,	25.	25,	
-	stran	Tout 0	[°C]	47,3	47,1	47.2	47,3	47,3	41,2	47.3	47.4	47,3	47,3	47,2	41,3	41,3	47,4	47,3	47,2	47,1	47,3	41,4 17 F	41,0 47.4	47.3	47.2	47,4	47,3	47,3	47,3	47,4	47,3	41,2	41,1	47,4	47,5	47,6	47,6	41,3	47,5	47,4	c, 14 77.2	47.4	47,5	47,5	47,4	47,6	41,4	47,5	47,4	47,4	47,5	41,5 47.5	47,6	47,5	
		Tout 08	[°C]	52	51,7	51.9	52	52	51,9 510	57.1	52.2	52	52	52	52,1	50 1	52.1	52	51,9	51,9	52	52,1	2,26	20	52.1	52.1	52	52	52	52,1	22	52 51 0	5, 3	52.1	52,3	52,3	52,2	52 1	52,3	52,2	52,2	- '2C' 22 3	52,3	52,3	52,3	52,3	52,3 57 1	52,4	52,2	52,2	52,3	52,2 52,3	52,5 52,5	52,2	
		Tout 07	[°C]	61,3	61,1 61	61.3	61,2	61,3	61,2 61 2	614 614	61.4	61,3	61,3	61,3	61,3	613 613	61.3	61,3	61,2	61,2	61,3	61,3 81 4	61,4	613 013	61.4	614	61,2	61,3	61,3	61,3	61,2	61,3 61 2	613 813	61,4	61,5	61,4	61,4	61,3 61,4	61,4	61,5	61,3 8,1 3	614	61,5	61,5	61,5	61,6 e1 4	614 614	61,5	61,4	61,4	61,5	61,4 61,5	61,7	61,4	10.00
		out 06	[°C]	57,8	57,7 57 6	57.7	57,8	57,8	57,9 57.0	58	57.9	57,9	57,9	57,8	5/,8	57.8	57.9	57,8	57,8	57,8	57,9	57,9 57,0	57 p	57.8	57.7	57.8	57,9	57,9	57,9	57,8	57,8	5/,/	57 8	57,8	57,9	57,8	57,7	57.7	57,7	57,7	5/,/ 57 8	57.8	57,7	57,8	57,8	57,8	57,8	57,8	57,7	57,7	57,8	57,8 57,8	57,8	57,8	
	ií teploty	rt 05 T	C]	10	6,0	2.5	1,1	2.2	1 2		10		1,1	202	5.2	- 20		1,2	1,2		21.7	- 0	× -	- 20	60	2	1,2	1,2	1,2	2	5	5 2	5.2		1,1		2	5.5	5	5	5 5		5	1	1,1				0,9	9,0	222	5.5		10	
	výstupr	04 Tot	1 [°	-			16	- (0 0 10	2 6	2				9 - 2	9 9 7	1	9	60 00 00 00	ο ά ν c	0 4 V +				0 2	2	6. 2					9 	2	1	-		-	-	نة م			1	1 6	9 9 9 9	ي م د	- 1	6(90				1	
		3 Tout	°]	65,	65 8 7		65,	9 <u>5</u>	ο υ υ	62	65.	65,	65,	65, 01	ς θ	62	65	65,	65,	65,	ς. β	ο α α	ο Έ Έ	s S	62	62	65,	65,	65,	6 <u>5</u>	9 2 2	οŋ.	3 5	62,	65,	65,	65,	60 60 60	65,	65,	ο Υ	6 ² 9	65,	65,	65,	65, e F	60) 65	62	65	65	82 [.]	00 [,]	65,	65,	
		Tout 0	[°C]	60,9	60,8 60,8	60.8 60.8	60'9	60 <u>.</u> 9	60'9 80 0	6,00	6	61	60,9	60,9	60'8 90'8	909 909	6 ⁰⁰	6 ⁰ 9	60,9	60,9	60,9	80,9	8,00	600 90	608	609 90	61	61	61	60,9	60 ^{,8}	60,8 80,8	909 809	6 ⁰ 9	60,9	60,9	60 ^{,8}	803 808	60,8	60,8	80'8 80'8	609 90	60,8	60,8	60,9	60,9 61	09	6 ⁰ 09	60,8	60,8	60 <u>,</u> 9	60's 60's	50,9 6,09	60,9	
		Tout 02	[°C]	62,7	62,6 62,6	62.7	62,8	62,8	62,8 67.8	07'0 62'0	62.9 62.9	62,8	62,8	62,8	62,8	62 8 82 8	62.8	62,8	62,8	62,8	62,8	07,8 8,20	0,20 8,0	62.7	62.7	62.8	62,8	62,9	62,9	62,8	62,7	62,/ 62,6	62.7	62,8	62,8	62,8	62,7	62,1	62,7	62,7	62,/ 62.8	62 8 87 8	62,7	62,7	62,7	62,7 e2 o	07,0 67,8	62,8 62,8	62,7	62,6	62,7	62,1	62,8	62,8	
		Tout 01	[°C]	66,7	66,6 66.7	66.8	66,7	66,8 0,0	66,8 66,0	60 8 90	0,00 80.8	66,8	66,7	66,8	66,/	00,00 8,66,8	60.8	66,7	66,7	66,8	66,8	00,8 66.7	00,/ 66.7	66.7	66.7	66.8	66,8	66,8	66,7	66,7	66,7	66,6 66.7	66.7	66,8	66,7	66,7	66,6	00'00 96 7	66,7	66,6	66,/ 66.7	66.7	66,7	66,7	66,7	66,7	00,/ 66.7	66,6	66,6	66,7	66,7	66,/ 66.7	66.7	66,7	
•	prac. bod WP2	Čas	[h:mm:ss]	0:00:0	0:00:20	0:01:00	0:01:20	0:01:40	0:02:00	0.02.20	0:03:00	0:03:20	0:03:40	0:04:00	0:04:20	0.05.00	0:05:20	0:05:40	0:00:00	0:06:20	0:06:40	00:70:0	07.70.0	0.08.00	0:08:20	0:08:40	0:00:00	0:09:20	0:09:40	0:10:00	0:10:20	0:10:40	0.11.00	0:11:40	0:12:00	0:12:20	0:12:40	0:13:00	0:13:40	0:14:00	0:14:20	0.15:00	0:15:20	0:15:40	0:16:00	0:16:20	0.12.00	0:17:20	0:17:40	0:18:00	0:18:20	0:18:40 0:19:00	0:19:20	0:19:40	•

hod hod									ctrana	Výn	iěník be	ez vířiče							_		trans undu		
WP3				Ŵ	stupní tep	otv			2010110		stubní tep	otv	paran	netrv na c	oně	podmínkv	před clo	nou tlak. zt	tráta teplotv	r vstup/výs	stup průt	ok tlak.	tráta
Čas	Tout 01	Tout 02	Tout 03	Tout 04	Tout 05	Tout 06	Tout 07	Tout 08	Tout 09	Tin 10	Tin 11	Tin 12	∆p _{cL}	ď	σ	T,t lab	문	AP air flo	w p t _{1 wa}	ter t _{2 w}	ater qV w	term Δp	vater
[h:mm:ss]	[°]	[°]	[°C]	[°C]	ြင္	်း	ຼີ	ູ	[] [ົວ]	ີວ	[°C]	[Pa]	[Pa]	m ³ .h ⁻¹]	[°C] [9	"H]	bar] [Pa	a]	5	5	ĝ.	Ξ
0:00:00	64,4 64.4	61,8 61,8	99	63,1 63,1	58,4 58,4	54,8 54,8	58,9 58,9	50,2	46 46 1	24,8	24,7	24,9 25						107	,2 80,7 7 80,7	71 71	49 49	8 8	33
0:00:40	64,4	61,9	80	63,1	58,6	54,9	28,9	50,2 50,2	46,1	25	24,8	25						106	1 80,1	7 71	57 49	000	21
0:01:00	64,4 64,4	61,8 61,8	09	63,1 63,1	58,6 58,6	54,8 54,8	28,8 28,8	50,2	46 46 1	24,9	24,7	25						106	80, 80, 80,	71, 71,	55 49 53 49		51
0:01:40	64,4	61,8	80	63,1	58,5	54,8	58,8 58,8	50,2	46	24,9	24,7	24,9						106	5 80,6	9 71,	52 49	0,0	22
0:02:00	64,5	61,8 61	09	63,1 62,1	58,5 50,5	54,8	58,9	50,2 50,4	46,2 46.4	25,1 75	24,9	25,1						106	;,3 80,7	7 71,	52 49	8	51
0.02.20	64,4 64.4	618 818	8	63.1	20'2	54,9 54,8	20,9	50.2	40, I 46	54 9	24,9	25						100	, vo 80.6	11	53 49		3 2
0:03:00	64,4	61,8	60	63,1	58,6	54,8	58,7	50 ^{,2}	46	24,9	24,7	24,9						106	4 80,	7 71,	51 49	0,0	21
0:03:20	64,4	61,8	60	63,1	58,5	54,8	28'8 28'8	50,1	46	24,9	24,7	24,9						10,	7 80,	7 71,	52 49	8	22
0:03:40	64,5 64,5	61,8	60 80 1	63,1 63,2	58,5 58,5	54,8 55	28,9 28,9	50,3	46,1 46,2	25,3	25,1 25.2	25,3						106	1 80, 80,7	44	5/ 49 67 49		51
0:04:20	64.5 64.5	62	60.2	63.2 63.2	58.8	55.1	59.1	50.5	46,4	25.5	25.3	25.5						106	,4 .3 80.7	14	6 49 6 49		32
0:04:40	64,5	62	60,1	63,2	58,8	55	59	50,4	46,3	25,3	25,2	25,3						106	,6 80,6	9 71,	57 49	0,0	23
0:05:00	64,4	61,9	60	63,1	58,7	55	59,1	50,5	46,4	25,2	25	25,2						106	,8 80,6	8 71,	57 49	8	24
0:05:20	64,4 64,4	61,9	09	63,1 e 1	58,7 50 6	54,9	28'9	20,3	46,2	25,1 75	25	25,1						10	7 80,6	6 71, 74	53 49		5 5
00.90.0	64.3	618	808		585	54.8	28.9	50.2	46.2	22	24.8	25						105	80.6	212	45 49		10
0:06:20	64.4	61.8	59.9	8 8	58.6	54.8	58.8	50.1	46.1	24.9	24.8	25						105	6.08 80.6	3	45 49	0.0	រុខ
0:06:40	64,4	61,8	60	63,1	58,6	54,9	58,9	50,2	46,1	25,3	25,1	25,3						10	6 80,6	3 71,	49 49	0,0	5
0:07:00	64,4	61,9	60	63,1	58,6	54,9	58,9	50,4	46,2	25,2	25,1	25,2						106	;3 80,6	11 71	5 49	8 0,0	22
0:07:20	64,4	61,8	09	63,1	58,6	54,9	59	50,4	46,3	25,1	25	25,1						106	,2 80,6	11,	49 49	8	52
0:07:40	64,3	61,8 61,8	59,9	ខ	58,5	54,8	58,9	50,3	46,2	25	24,9	25						105	15 80,6	33	45 49		20
00:80:0	64,3 64,3	61,8 0,8	29,9	30	C,8C	24,8	28,9 28,9	50,3	40,2	C2	24,8	22 22						901	4 80,6	2 2	4/ 49		2 2
0.08.40	64,4 64.4	61.0 81.0	96,80 60	63 1	58.7	54 0	20, / 58, 8	20'-	40 46 1	2,02	1,02	2,62						100	6 00,0 805	21,1	40 49		2
00:60:0	64,3	61,8	60	63	58,7	54,9	58,9	50,3	46,2	25,2	25,1	25,2						106	9 80,5	5 71,	47 49	0,0	19
0:09:20	64,3	61,7	59,9	<mark>63</mark>	58,5	54,8	58,8	50,3	46,2	25,1	24,9	25,1						105	,5 80,5	3 71,	42 49	8	02
0:09:40	64,2	61,7	59,9	<mark>63</mark>	58,5	54,8	58,6	50,1	45,9	25	24,9	25	328.3	361	2718	24 77 3	96	700 105	,2 80,5	1 71,	37 49,	0,0	5
0:10:00	64,2	61,7	59,9 29,9	62,9	58,4	54,7	58,7	50,1	46	25	24,9	25	2,010	3	2		2	100	80,4	9	36 49	000	51
0:10:20	64,2	61,7	59,8	62,9	58,5	54,7	58,7	50,1	46	25,1	25	25,1						106	80,4	8 7 7	32 49		21
0:11:40	64,2 64.2	61.7	29,90	62 G	28,5 58,5	54.7	28,9 58,0	20,2 50,3	40,1 46.2	29,2	75, ¹	25,2						101	, 2 80,4 80,4	2 2	32 49		36
0:11:20	64.2	61.7	59.8	62.9	58.4	54.7	58.9	50.2	46.2	25	24.9	25						105	.00 80.4	3 71	29 49		22
0:11:40	64,1	61,7	59,8	62,9	58,4	54,7	58,7	50,2	46,1	25	24,9	25						106	,2 80,4	2 71,	29 49	0,0	23
0:12:00	64,1	61,6	59,8	62,8	58,3	54,7	58,7	50,1	46	25	24,9	25						105	9 80,4	17,71	29 49	0 8	22
0-12:20	64.7 64.2	01,0 61,6	29,8 29,8	62,8 62,8	58,4	54.7	28,/ 58.0	202	40,9 46,2	22 JE	24,8	25 2						c01	80,4 80,4	4 7 7	24 49		17
0:13:00	64,1	61,7	59,8	62,9	58,5	54,7	58,7	50,2	46,2	25,1	25	25,2						106	.6 80,3	8 71.	26 49	0,0	51
0:13:20	64,1	61,6	59,8	62,8	58,4	54,7	58,8	50,2	46,2	25,1	25	25,1						106	,2 80,3	6 71,	23 49	0 8	2
0:13:40	64,1	61,6	29,8	62,8 67 0	58,4	54,/	58,/	20,1	40	29,1 25	24,9	25,1						100	2,00 2,00 2,00	21,1	23 49		5 2
0:14:20	64.1	616	29,0 59,8	02,0 62,8	20,4 58.3	54.7	20, <	20'Z	46.1	22	24,9	25						105	7 80.3	11 71	19 49		3 2
0:14:40	64,1	61,6	59,7	62,8	58,4	54,6	58,7	50,1	46,1	25	24,9	25						106	;3 80,3	2 71,	19 49	8 0,0	21
0:15:00	64,2	61,6	59,8	62,8	58,4	54,7	58,9	50,3	46,2	25,4	25,3	25,5						105	.08	2 71,	23 49	0,0	21
0:15:20	64,2	61,7	59,9	62,9	58,6	54,9	28,8	20'3	46,3	25,5	25,4	25,5						105	5 80,3	17	27 49		ន្តរ
0:15:40	64.1	61.7	29,9 59,8	62 9 62 9	20'00 28 5	54.7	20,0	20,3	46,3	25.3	25.2	25.3						106	80.3 80.3	71	22 49		2
0:16:20	64,1	61.6	59,8	62.8	58,4	54.7	58,6	50.2	46.2	25,2	25	25,2						106	2 80,3	1 71.	23 49	0.0	51
0:16:40	64,1	61,6	59,8	62,8	58,4	54,7	58,8	50,2	46,1	25,1	25	25,1						106	,1 80,2	9 71,	21 49	0	5
0:17:00	64,1	61,6	59,8	62,8	58,4	54,7	58,9	50,2	46,1	25,1	25	25,1						105	3 80,2	8 71,	22 49	8	21
0:17:20	64	61,6	59,7	62,8	58,4	54,7	28,8	50,2	46,1	25,1	22	25,1						100	80,2	11, 11, 11, 11, 11, 11, 11, 11, 11, 11,	21 49	000	5
0:17:40	64	61,6	59,/	62,8	58,4	54,6	28,6 7	20,1	46	25,1	c7	25,1						106	4 80,2	2 7	23 49		
0.18:00	64	61 5 7 5	7 28,7	07,0 8,20	20,3 58,3	54,0	20,/ 58.6	20,-	40,0 A6	,0, 75,	24,9	20,1							5 00,2	8 71,	2 49		2 2
0:18:40	64	61,5	59,7	62,7	58,4	54,6	58,6	50,1	45,9	22	24,9	25,1						105	1 80,2	8 71	2 49	; 0	12
0:19:00	64	61,5	59,7	62,7	58,3	54,6	58,8	50,2	46,1	25	24,9	25,1						105	5 80,2	7 71,	18 49	0	2
0:19:20	64	61,5	59,7	62,8	58,3	54,6	58,8	50,2	46	25	24,9	25,1						106	,2 80,2	7 71	2 49	0,0	21
0:19:40	64	61,5	59,7	62,7	58,3	54,6	58,8	50,2	46	25	24,9	25	0 000					105	3 80,2	6 71,	19 49	000	5
průměr	64,25	61,73	59.89	62.95	58.49	54.77	58.82	50.21	46,11	25,09	24.96	25.11	328.3	361.0	2718	24.77 3	96 96	700 1 106,	25 80,5	0 71.	37 49.	0.0	11

Т	áta		5	Γ																																			Τ						Γ	Π			Т			Т	Π	Т	Τ	-
	tlak. ztrá	Ap wate	[bar]	0,001	0,002	0,002	0,002	700'0	0.002	0.003	0.002	0.001	0,002	0,002	0,002	0,002	n, uuz	0,002		0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0.002	0,002	0,001	0,002	0,002	700'0	0,002	0,002	0,003	0,002	0,001	0,002	0,002	0,002	700'0	0.001	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0000
	vođy průtok	qV waterm	[m]	16,85	16,85	16,85	10,85	10,85	16.85	16.85	16.85	16,85	16,85	16,85	16,85	16,85	10,85	16,85	16,00	16.85	16,85	16,85	16,85	16,85	16,85	16,85	16,85	16.85	16.85	16,85	16,85	16,85	16,85	10,85 16 05	16.85	16,85	16,85	16,85	16,85	16.85	16,85	16,85	10,85 16 85	16.85	16,85	16,85	16,85	16,85	16,85	16,85	16,85	16.85	16,85	16,85	16,85	
	strana /výstup	to water	[.c]	69,5	69,46	69,53	09,43 60 F 4	60,54	69.54	69.55	69.55	69,48	69,58	69,42	69,5	69,51	09,54	69,53 60 51	60 57	69.46	69,55	69,49	69,41	69,39	69,47	69,53	69,42	69.4	69.34	69,39	69,24	69,24	69,3 20,01	60.27 60.27	69.32	69,22	69,08	69,18 20,15	69,15 60,10	69,10 69,18	69,21	69,13	09,20 60 22	69.32	69,33	69,24	69,26	69,29	69,35	69,3	69,24	69.41	69,34	69,37	69,37	
	otv vstun	water	C]	0,25),25	0,25	07.0	0,20 26	0.26	0.25	0.25	0.25	0,26	0,26	0,26	0,26	C7'D	0,24	1,24	23	0,21	0,2	0,19	0,16	0,15	0,14	0,14	1 12	0.08	0.05	0,05	0,07	,07	40,00	0,99	9,91	9,9	9,92	93	9,94	9,94	9,94	9,94	0.97	80	0,01	0,04	0,05	0,07	0,08	107	0,1	0,15	0,15	0,18	:
+	áta tenlo	v p t		8	8	8						88	8	8(8				δă	5 2	8	8	8(8(8			ŏ ∝		8	8(8	<u> </u>	7 Q	~ ~	. 22	2 0		~~~~	2°2	16	22	~ ~	22		8	8	8(<u> </u>	8	8°	° ∞	8		×	
	tlak. ztr	air flo	[Pa]	19,2	19	18,0		19,4	19	, <u>6</u>	19,0	19	18,9	18,9	18,9	18,0	<u>6</u>	18,0	2 0	191	18,6	19	19	18,8	19,2	18,0	19	<u>8</u>	6	18.6	19,1	19,3	18,0	P. 0	10,01	19	18,9	19,2	5	9	19	19	10,	10,00	19	18,6	19	19	19	18,8	19	18.9	19	18,6	. 61	
	d clonou	AP	[mbar]																												89510															_			_					_		_
	inkv před	RH	[%rH]																												58,83																									
	mbod	T,t lab	ູ່ວ																											00,70	21,63																									
	a cloně	a	[m ³ , h ⁻¹																											000	892																									
	ametrv n	ď	- La																											\$	46																								-	
ء	par	Apci	[Pa]			_											_		_			-					_			2	34,8					1											П			_	_	\top		—		Т
viricer	otv	Tin 12	ູ່	25,4	25,2	25,3	20,3 2,5	25,4 25,4	25.4	25.4	25.3	25.3	25,2	25,2	25,2	25,4	20'0 7 20	25,5	C'C7	25.3	25,1	25,1	25,2	25,2	25,3	25,5	25,4	25,0	25.1	25,1	25,2	25,2	25,4	25,4	25.2	25,1	25,1	25,1	25,1	25.1	25,2	25,4	C,C2 25.7	25.6	25,4	25,2	25,2	25,2	25,3	25,3	25,3	25.2	25,2	25,2	1. 100	7'07
iēnik s	tunní ten	Tin 11	ູ	25,3	25,1	25,2	20'3 25'3	25,3	25.3	25.3	25.2	25.2	25,1	25,1	25,1	25,3	20'07	25,4	25,4	25.1	25	24,9	25	25	25,2	25,4	25,3	5,c2	24.9	25	25,1	25,1	25,3	20,3 75 7	25.1	25	24,9	24,9	c7.	25	25	25,2	20,3	25.6	25,2	25,1	25	25,1	25,1	25,2	25,2	25.1	25,1	25		, c2
ž.	/zduchu vs	Tin 10	ູ່	25,4	25,2	25,3	20,3	25,4	25.4	25.4	25.3	25.3	25,2	25,2	25,2	25,4 25 r	20'2	25,5	25,4	25.2	25,1	25,1	25,1	25,1	25,3	25,5	25,4	25.1	25.1	25.1	25,2	25,2	25,4	25,4	25.2	25,1	25,1	25,1 25,1	25,1 25	25.1	25,2	25,3	20,4 25.7	25.6	25,3	25,2	25,1	25,2	25,3	25,3	25,3 75 2	25,2	25,2	25,1	0	7'07
	strana	Fout 09	ູເວ	62,4	62,3	62,3 67.3	02,3	62,3 62,3	02,3 62.3	62.4	62.4	62.4	62,3	62,3	62,3	62,4	02,4	62,4	62,4	62.4	62,3	62,3	62,3	62,3	62,3	62,4	62,4	62,4 62,3	62.2	62.2	62,2	62,2	62,2	02,2 67.2	62 3 62 3	62,2	62,2	62,1	62,1	62,2 62,2	62,2	62,2	02,2 87 A	62.4	62,3	62,2	62,2	62,3	62,3	62,3	62,3 e.7.2	62,5 62,4	62,4	62,4		02,4
		out 08	ູ່	99	99	96 66	00	00,9 66	80	80	80	899	99	66	99	99	8	99	00 49	3 99	65,9	65,9	65,9	65,9	65,9	65,9	65,9 66	00 85.9	65.8	65.8	65,8	65,8	65,8 51,8	00,00 85,0	85.8	65,8	65,7	65,7 or -7	7 20	65.7	65,7	65,7	00,00 85,0	62.9	65,8	65,8	65,8	65,8	65,8	65,8 	65,8 er o	00,00 65.9	65,9 65,9	65,9		ی د د
		ut 07 To	<u>כ</u> ו	0,2	0,2	0,2	7.0	7 0	0.2	100	100	0.2	0,2	0,2	0,2	0,2	7.0		2,0	100	0,2	0,1	0,1	0,1	0,1	0,2				02	20	02	1,0			02	9,9	000	5 0	8'A	20	02	5 2	- 1-	02	20	02	0,1	0,1	1,1	1,1		. 1.	0,2	-	
		t 06 To		2	2								2	5 7	2						6	2	5 7	5 7	2						6	6	6. L	0	ກຼອ	0	8	0 0 0 0	0 - -	0 00	8	80,0	ר עניי עניי		6	6	٥ ٥	2	2	5	2		2	2	-	
	tenlotv	05 Tou		e e	9	000			00	9	9	9	°	9	ő			69			64	° °	9	8	°					64	64	64	64	ο σ	6 6	64	64	64	64 64	64 64 64	64	64	04 9	0	64	64	64	9 v	9	9	00	200	9	0	-	
	ýstupní 1	4 Tout	ູ ເ	67,9	67,8	67,8	0/2	0/,0 87,8	67.8	67.9	67.8	67.8	67,8	67,8	67,8	67,6	0/20	6/,5	0/,2 87 9	67.6	67.7	67,8	67,7	67,8	67,8	67,6	67,6	67.6	67.1	67.7	67,7	67,6	67,6	67.1 87.1	67.6	67,6	67,6	67,5	6/,2	67.6	67,5	67,5	0/,0 87.1	67.7	67,7	67,7	67,6	67,7	67,7	67,6	67,7	67.8	67,7	67,8	2	
		Tout 0	ູ	70,8	70,7	70,7	10,1	/0/	70,8	70.8	70.7	70.8	70,7	70,7	70,7	70,8	20,07	70,8	0'0 20 20	707	70,7	70,7	70,7	70,7	70,7	70,7	70,7	70.7	202	70.6	70,6	70,6	70,6	0'0/ 20 8	70.6	70,5	70,5	70,4	70,4	20/2	70,5	70,5	c'n/2	70.6	70,5	70,5	70,5	70,6	70,6	70,6	70,6	70.7	70,7	70,7	202	
		Tout 03	ູ	66,5	66,5	66,5 66,4	00,4	00,4 66.5	66.5 66.5	66.5	66.5	66.5	66,4	66,4	66,4	66,5 20,1	00'2	66,5 66 F	00'0	66.4	66,3	66,3	66,3	66,3	66,3	66,3	66,3	00'3 66.3	66.3	66.3	66,3	66,2	66,2	00,3 66.3	66 2	66,2	66,2	66,1	66,1 66.1	66.1	66,1	66,1	2,00 66.2	66.3 66.3	66,3	66,2	66,2	66,3	66,3	66,3	66,3 66,3	00'3 66.3	66,3	66,4	000	4
		Tout 02	ູ່	69,2	69,1	69,1 60,1	09,1	60,1 60,1	69.2	69.2	69.1	69.2	69,1	69,1	69,1	69,2	09,2	69,2	60 1 60 1	69 1	69,1	69,1	69,1	69,1	69,1	69,1	69,1 60,1	69 69	69	69	69	69	69	60	80	68,9	68,9	68,9 0,9	68,9	683 983	68,9	68,9	08,9 60	69	69	68,9	68,9	69	69	69	69	69.1	69,1	69,1		1,50
		out 01	[°]	71,5	71,5	71,5	1,5	71 5	71.6	71.5	71.5	71.5	71,5	71,5	71,5	71,6	0,17	/1,6	71 5	71.5	71,5	71,5	71,5	71,5	71,5	71,5	71,5	21 4	71.4	71,4	71,4	71,4	71,4	71.2	71.3	71,3	71,2	71,2	71,3	71.3	71,3	71,3	71.3	71.3	71,3	71,3	71,3	71,4	71,4	71,4	71,4	71.4	71,4	71,4	71 /	1
-		S T	Iss:	00	1:20	. 40	3		P 0	20	40	8	1.20	1:40	00:		140	0.0		90	20	1:40	00:	:20	:40	88	120	04	20	40	00:	1:20	. 40		40	0	:20	40	0.0	40	00		040	50	:40	00;	1:20	1:40	00:	.20	40	00	140	00:0	- 000	2:
	prac.	Č	h:mn	0:0	0:0	0:0	10:0	0.0	0:0	0:02	0:02	0:03	0:03	0:03	0:04	0:04	0:04	GD:0	20.0	0.06	0:06	0:06	0:07	0:07	0:07	800	80:0	0.0	60.0	60:0	0:10	0:10	0:10		0	0:12	0:12	0:12	0.13	0.13	0:14	0:14	С 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0:15	0:15	0:16	0:16	0:16	0:17	0:17	0:17	0.10	0:18	0:19	0.19	

	tráta	vater	ar]	60		60	60	08	60	5	60	00		5	50	80	5	60	60	80	60 5	, e	85	60	60	60	80	60 ;	60	gg	80	60	8	58	20	8	60	80	08	80	8 2	60	6	60	60	60	60 5	60 %	90	3 2	6	60	5	60
	tlak. z		ğ.	000		0.0	0.0	0,0	0,0	0,0	0.0	000			200		0	0,0	0.0	000	5		50	000	0,0	0,0	00				000	00	0'0	000		000	0'0		0.0	0,0	0		0,0	0,0	0,0	0.0	000			300 	200	0,0	0,0	
-	a vouy průtok	qV water	<u>[</u>	33,6	33,6	33.6	33,6	33,6	33,6	33,6	33,6	33,6	33,0 22,6	33,0 23,6	33.6 33.6	33.6	33,6	33,6	33,6	33,6	33,6	33.6	33.6	33.6 33.6	33,6	33,6	33,6	33,6	33,6 23,6	33.6	33.6	33,6	33,6	33,6	33,6	33,6	33,6	33,6 33,6	33,6	33,6	33,6 23,6	33.6	33,6	33,6	33,6	33,6	33,6	33,6	33,0 33,6	33.6 33.6	33.6	33,6	33,6	0000
	strana o/výstup	t _{2 water}	[°C]	68,58	68,58 68,55	68.51	68,62	68,57	68,56	68,59	68,63	68,62	00,00 60 66	00,00 80 54	68,58	68.59	68,6	68,6	68,49	68,61	68,62 60 EE	00'33	68.65	68.7	68,65	68,5	68,61	68,59	68,61 68,57	68.64	68.61	68,61	68,64	68,6	68 51	68,55	68,62	68,57 68 54	68,49	68,6	68,54 60 57	68 49	68,61	68,68	68,61	68,54	68,72	68,52	68,55 68,54	68,59	68,59	68,59	68,64	
	lotv vstui	1 water	[°C]	79,42	79,43	79.44	79,44	79,45	79,44	79,44	79,43	79,45	70.44	70.4E	79.45	79.45	79,45	79,45	79,45	79,45	/9,44 70.45	79.45	20 44	79.45	79,44	79,44	79,45	79,44	/9,46 70.45	79.45	79.44	79,45	79,45	79,44	70.43	79,45	79,43	79,43	79,43	79,44	79,44	79.44	79,44	79,44	79,43	79,43	79,43	79,43	70.43	70.42	79.42	79,43	79,41	
	tráta tep	ow p t	a]	<u>د</u>	ہ م	2	9		L.	9	-		4 1		σ	0	9	2	<u>ں</u>	ດຸດ	0	ησ		<u>,</u> 0	4	6	2		9.1	_ α	2 04	0	6	۰ و	- «	0 ~	. 2	n u		8	9 1	-		9	4	80	<u>6</u> .	4.	4 4	0 -	- 4		2	
	i tlak. z	air fl	9	22) G	57	57	ũ	57	57	57	22	2	202	20	22	57	57	22	22	2	272	5 5	22	57	57	22	2	5/2	33	22	57	57	57		57	57	57	22	57	51	22	28;	57	57	57	22	<u>}</u>	22	25	22	57	22	
	d clonot	AP] [mba																											2 9930																								_
	ínkv pře	E	[%rH																											51,51																								_
	nbod	T,t lał	ູ																											22,34																								_
	a cloně	a	[m ³ h ¹																											1796																								_
	metry na	ā	[Pa]																											172																								
	para	∆p _{cL}	[Pa]													_							_					_		142,8		_										_												т
<u>í í řičem</u>	ţ,	Tin 12	ູ	25	24,9	24.9	24,9	24,9	25	25	25,1	25,3	25,3	2,02	24.9	25	25	25,1	25,2	25,1	25,3	25.4	25.3	25.3	25,2	25,2	25,2	25,3	25,2	25.2	25.3	25,4	25,4	25,3	25.2	25,2	25,2	25,2	25,1	25,2	25,2	25.4	25,3	25,3	25,2	25,2	25,3	25,4	25,4	25.3	25.2	25,2	75 3	2,24
ěník s v	upní teplo	Tin 11	[°C]	24,9	24,1	24.8	24,7	24,7	24,8	24,9	24,9	25,1	20,2 7E 1	1,010	24.7	24.8	24,8	24,9	25	25	25,1	25.1	25.1	25.1	25	25	25	25,1 25,1	25,1 25	25.1	25.1	25,3	25,3	25,1	25	25,1	25	25 24 Q	24,9	25,1	25 25	25.2	25,1	25,1	25	25	25,1	25,3	20,2	25.1 25.1	24.9	25,1	25.1	
Vým.	vst	Tin 10	[°]	25,1	24,9	24.9	24,9	24,9	25	25	25,1	25,3	20,3	20,2	24.9	24.9	25	25,1	25,1	25,1	25,3	25.3	25.3	25.2	25,2	25,2	25,2	25,3	25,2 25.2	25.2	25.3	25,4	25,4	25,3	2,02	25,2	25,2	25,1 25,1	25	25,2	25,1	25.4	25,3	25,3	25,1	25,2	25,3	25,4	25,4	25,4	25,1	25,2	25.2	50,0
	strana v.	out 09	်း	60,4	80,3 80,3	60,4	60,3	60,3	60,3	60,3	60,4	60,5 20,5	c'00	50,4	60,4 60,4	60.4	60,4	60,4	60,4	60,5 20,5	60,5 50,5	60'2	50.5	60.5 60.5	60,5	60,5	60,5	60,5 22,7	60,5 60,5	202	60.5	60,5	60,5	60,5 60,5	60'2	60,5 60,5	60,5	60,5 60,5	60,5	60,5	60,5 60,5	60.6	60,6	60,5	60,5	60,5	60,5 2.2 r	60,5	60,0 80,6	en 6	60,5 60,5	60,5	e ue	2
		ut 08 To	<u>د</u>	83	20	5.6	2,9	2,9	2,9	2,9	83	33	1,1 83	56	3 6	8.69	<u>8</u> 3	33	33	33		- - -	- - -	- .	3,1	3,1	3,1		, 1 1	- - -	. t.	3,1	3,1	, 1	-	8.6	3,1	, 1 1	83	3,1	, 1 1	- - -	3,1	3,1	3,1	3,1	3,1	3,1	2,1		- t-	3,1	, ,	-
		t 07 To	5	1_00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 2	7,7	,7 6	,7 6	,7 6	8	ω (α	- م م	x 0	0 r		8	<u>م</u>	ω.	ω (α	20 0 20 0	0 «		000	.8	8	8	8 (9 (o a	o c		8	8	8 0	οα	0.00	8	α α α	ο <u></u> ω	8	8 0 9 9		8	8	8	8	8,0	8 0	α α α	ρα	2 8 9 8	8	۳ ۵	2
		06 Tout	5	88	89	8 8	99	99	99	99	99	99	00	2 g	38	899	99	99	99	99	99	8 8	89	8 8	66	99	99	99	99	8 8	8 8	99	99	99	8 9	88	99	99	8 8	99	99	89	99	99	99	99	99	66	00	3 9	38	99	99	8
	olotv	Tout	ູວ	62,3	62,2 82,2	62.2	62,2	62,2	62,2	62,2	62,3	62,3	6,20 8,3	07'0 80'0	62.2 62.2	62.3	62,3	62,3	62,3	62,3	67,3 67,3	62 4 62 4	6, 4 6, 4	62.4	62,4	62,3	62,3	62,4	62,4 62,4	62 A	62.3	62,4	62,4	62,4	92,4 80,3	62,3	62,3	62,3	62,3	62,3	62,3	62 4	62,4	62,4	62,3	62,4	62,4	62,4	62 4	1,10 67 4	62.4	62,3	62 4	ĵ
	tupní ter	Tout 05	ີວ	64,9	64,8	64.8	64,8	64,8	64,8	64,7	64,9	65	CQ 19	04,4 הו מ	64,8 64,8	64.8	64,9	64,9	64,9	64,9	64,9 64,9	65 65	35	65	64,9	64,9	64,9	65	64,9 65	3 5	64.9	64,9	65	64,9	019	64,9	64,9	64,9 64,0	64.8	64,9	64,8	65	65	64,9	64,8	64,9	64,9	64,9 35	C0	04,9 64.9	64.9	64,8	65	
	výs	Tout 04	[°C]	67,4	67.3 67.3	67.3	67,3	67,3	67,3	67,3	67,4	67,4	6/,4 67.4	61,4 87.4	67.3	67.3	67,3	67,4	67,4	67,4	61,4	67.4	67.5	67.4	67,4	67,4	67,4	67,4	67,4 67,4	67.4	67.4	67,4	67,4	67,4	67.3	67,3	67,4	67,4 67,4	67,3	67,3	67,3	67.4	67,4	67,4	67,3	67,4	67,4	67,4	61,4 67.4	67.4	67.4	67,3	67.4	
		out 03	[°C]	63,5 52 F	63,5 63,5	63.5	63,5	63,5	63,5	63,5	63,5	63,5	03,0 63,6	03,0 63 E	63,5 63,5	63.5	63,5	63,5	63,5	63,6	63,6 62,6	63.6	63.6	63.6	63,6	63,6	63,6	63,6 22,6	63,6 63,6	63.6	63.5	63,6	63,6	63,6 62,6	03,0 63.5	63,5	63,5	63,5 63,5	63,5	63,5	63,5 e2 E	63.6	63,6	63,6	63,6	63,6	63,6	63,6	63,0 63,6	03,0 63.6	63.6	63,5	63.5	2
		it 02 Tc	ច	9.0	200	3.6	3,6	3,6	3,6	3,6	9.0	9.0	0.0	0.0	3,6	3.6	3,6	3,6	9.0	9.0	0,0	0 9		3.6	3,6	3,6	3,6		9.9		3.6	3,6	3,6	9.0	0,0	3.6	3,6	9.9	3,6	3,6	9.9	9.0	3,6	3,6	3,6	3,6	9.0	3,6	0,0	0,0	3.6	3,6	3.6	
		01 Tot	°.	0 0 0	δ d v	200	90	66	6	9	9	ن ق ہ	0 0 0 0	ة d	5 00	000	6	9	9 0	0 0		5 8 0 6		200	6 6(6	9	000	9 8 9	5 2	000	9	9	90	5 8 0 8	o o	6	9 v 0 v	0 0 0 0	9	ة ق م	5 G	9	6	9	9	0	6 01	5 0 9 %	5 8 0 %	200	900	5 66	
		Tout	S.	89	20 80 80 80 80 80 80 80 80 80 80 80 80 80	68.5	68,6	68,	68,	68,(68	80	200		- - - - - - - - - - - - - - - - - - -	689	68,	68,(68,0	89	89	000	89	88	68,	68,	68,	89	89	89	68 [.] 6	68	68,	89	00	9,69 9,69	68,	689	89 1 9	68,	689	89	68,	68,	68,	68,	89	68,	DQ BB	200 989	38	68,	68.	
-	IC. DO(Čas	:mm:ss	00:00:0	07:00:0	0:01:00	0:01:20	0:01:40	0:02:00	0:02:20	0:02:40	0:03:00	0:02:20	0:03:40	0:04:20	0:04:40	0:05:00	0:05:20	0:05:40	0:06:00	0:00:00	0.07-00	00.00.0	0:07:40	0:08:00	0:08:20	0:08:40	00:00:00	0:09:20	0.10.00	0:10:20	0:10:40	0:11:00	0:11:20	0.11.40	0:12:20	0:12:40	0:13:00	0:13:40	0:14:00	0:14:20	0.15.00	0:15:20	0:15:40	0:16:00	0:16:20	0:16:40	0:17:00	0:17:20	0.18-00	0:18:20	0:18:40	0:19:00	

DP-IB-2020

											Výn	ěník s v	ířičem							-				
prac. bod WP3					výstupn	í teploty				strana	vzduchu vs	tupní teplo	ţ	param	etry na cl	oně	podmínky	r před clo	nou tlak.	ztráta te	ploty vstu	strana v o/výstup	rody průtok tl	ak. ztráta
Čas	Tout 01	Tout 02	Tout 0	3 Tout (04 Tou	t 05 T	out 06 1	out 07	Tout 08	Tout 09	Tin 10	Tin 11	Tin 12	Δpcl	ď	σ	,t lab	RH	AP air	flow p	t _{1 water}	t _{2 water}	IV waterm	Δp _{water}
[h:mm:ss]	[.c]	[°C]	[°C]	[]	•	<u>5</u>	[°C]	[°C]	[°C]	[°C]	[°כ]	[.c]	ြင္ပ	[Pa]	[Pa] [r	n ³ .h ⁻¹]	[°C]	%rH] [m	bar] [Pa]	[°C]	.	Ē	[bar]
0:00:00	67	65,1	62	65,5	63	4	51,3	65	61,7	59,9	25,4	25,3	25,4							10,3	80,24	69,83	50	0,022
0:00:20	6/	65,1 65.1	62	65,5 85 5	0 29 29	4 0	01,3	65 65	61,/ 61 6	59,8	25,3 25.3	25,2 25	25,4						-	10,2	80,26 en 2e	69,8 60 01	20	0,022
0.01.00	67	65 1	80	00'c 65.5	88	າຕ	31.3	65	616	29,0 59,8	25.1	22	29,2						=	10.6	80.27	69.78	20 00	0.024
0:01:20	67	65,1	62	65,5	63	e,	51,3	65	61,7	59,8	25,3	25,1	25,3						=	09,9	80,27	69,84	50	0,022
0:01:40	67	65,1	62	65,5	63	4	51,4	65,1	61,7	59,9	25,4	25,3	25,4						÷	10,6	80,26	69,84	20	0,022
0:02:00	67	65,1 2,1	62	65,5 01 1	60	4,	01,3 21,3	65 21	61,7	59,8	25,2	25,1 25	25,2						= ;	00'0	80,27	69,79	03 5	0,022
07:20:0	6/	60,1 85,1	20	00 7 7 7 7	2 2 2 2 2	4 c	01,0 01,0	00 79	01,0 81,6	50,8 8,95	20,2	с7 У2	25,2							110	80,2/ 80,28	60,8 60 77	202	0,022
0:03:00	67	65.1	62	65.5	88	າຕ	91.3	65	61.7	59.8	25.3	25.1	25.3						=	8.60	80.27	69.83	20	0.02
0:03:20	67	65,1	62	65,5	63	4	51.3	65	61.7	59.8	25,3	25,1	25,3						=	09.7	80.27	69,82	20	0,022
0:03:40	67	65,1	62	65,5	63	.3	51,3	65	61,6	59,8	25,2	25,1	25,3						=	09,9	80,27	69,8	20	0,023
0:04:00	67	65,1	62	65,5	63	e,	51,3	65	61,6	59,8	25,2	25,1	25,2						=	6,60	80,27	69,82	20	0,022
0:04:20	67	65,1	62	65,5	8	<u>с</u> , с	<u>31,3</u>	65	61,7	59,8	25,1	25	25,2						-	10,2	80,27	69,81	20	0,022
0:04:40	6/	65,1 65,1	29	65,5	29 50		01,3	65	61,/	59,8	25,2	25,1	25,3							09,3	80,27	69,81	20	0,023
00:00:00	67	60,1 65,1	8	00,0 65,5	36	υ, κ	01,0 01,0	65	61.7 61.7	29'8 20'8	25,3	25,1	25,3 25,3						=	10,5	80,26 80,26	60,84	2 2	0,023
0:05:40	67	65.1	62	65.5	8	t_m	01.3 01.3	65	61.6	59.8	25.2	25	25.2						-	10.1	80.28	69.8	20	0.021
0:00:00	67	65,1	62	65,5	63	4	51,3	65	61,7	59,8	25,2	25,1	25,3						-	10,2	80,27	69,84	50	0,022
0:06:20	67	65,1	62	65,5	63	e,	51,3	65	61,7	59,8	25,2	25	25,2						=	09,5	80,27	69,84	20	0,021
0:06:40	67	65,1	62	65,5	83	4	<u>31,3</u>	65	61,7	59,8	25,2	25	25,2						-	10,1	80,27	69,81	20	0,023
0:02:00	67	65,1	62	65,5	8	4	51,3	65	61,7	59,8	25,2	25,1	25,3						=	9,60	80,28	69,83	20	0,021
0:0/:20	6/	65,1	29 2	65,5 7	36		01,3	65	61,6	59,8	25,2	25,1	25,3							09,8	80,27	69,82	0, 2	0,021
0.08.00	0/ 87	85.1	20	00 7 7 7 7	2 2 2 2 2 2 2	າ ຕ	ν. υ α	202	61,/ 81,8	29'8 20'8	20'3 2E 2	1,0,1	20,3 25,3						=	10,50	80,20 80,26	09,02 60 76		0,02
0.00.00	67	65.1	8	2,00	3 6	0 z	0 0 0 0	e re	617 617	20,00	25.3	25.1	26.2						- -	c'n	00,20 80.25	60.78	200	0.023
0.00.20	67	65.1	8	200°C	36	₽_t	0 0 0 0	55	617	50,80	25.3	25.1	25.4						=	00 1	80.26 80.26	60 84	00	0 020
00:60:0	67	65,1	62	65,5	63	4	31,3	65	61,7	59,8	25,3	25,1	25,3						=	08,2	80,26	69,82	20	0,022
0:09:20	67	65,1	62	65,5	63	,4	51,3	65	61,7	59,8	25,2	25,1	25,3						=	09,1	80,25	69,79	50	0,022
0:09:40	67	65,1	62	65,5	63	e,	51,3	65	61,7	59,8	25,2	25	25,2	324.1	365	2699	22.78	57.53 99	11	6,90	80,26	69,8	20	0,024
0:10:00	6/	65,1 65,1	62	65,5			01,3 0	65	61,6	59,8	25,2	55	25,2							09,5 0	80,26	69,78	20	0,023
0-10-70	67	65,1	8	00,0 65,5	36	ກູຕ	01,0 81.9	00 85	01,0 A A	29,80 70,8	20,2	75,1	20,2						=	00,8	80,20 80.25	60,84	200	0,027
0.11.00	67	651	8	65.5	3 6	<u>,</u>	0 0 0 0	65	616 0,0	29,00 59,8	252	22	25.2						=	1 10	80 24	69 77	20	0,022 0,022
0:11:20	6.99	65.1	62	65.5	88	ຼຸຕຸ	01.3 01.3	65	61.6	59.8	25.1	24.9	25.2						=	09.7	80.23	69.73	20	0.021
0:11:40	67	65,1	61,9	65,4	63	e,	51,3	65	61,6	59,8	25,2	25	25,2						7	09,1	80,24	69,79	50	0,022
0:12:00	6'99	65,1	62	65,5	80	4.	51,3	65 25	61,6	59,8	25,2	25	25,2						=	09,2	80,23	69,77	20	0,021
0.12.20	67	65,1	8	00'C	3 2	م 1	0.0	65	617 617	0,90 70 0	25,5	25.2	25,4						=	8 0 0 8 0	00,22 80 23	60 81	200	0,022
0:13:00	67	65.1	62	65.5	8 8	<u>,</u>	61.3 01.3	65	61.7	59.9	25.4	25.3	25.5						=	0.00	80.23	69.82	20	0.021
0:13:20	67	65,1	62	65,5	63	.3	51,4	65	61,7	59,9	25,4	25,3	25,5						7	09,6	80,22	69,76	50	0,023
0:13:40	6'99	65,1	62	65,5	63	en j	51,3	65	61,6	59,8	25,2	25	25,2						=	09,3	80,21	69,75	20	0,022
0:14:00	6,99 66,9	69	61,9 61,9	65,4 85,4	63 6		01,2 81.2	64,9	61,5 51 5	59,7	22	24,8	25,1 25							08,8	80,21	69,/3 60.75	20	0,02
0:14:40	6'00	65	61.9	65.4		ų –	31.2	64.9	61.5	59.7	25	24.8	25						=	09.5	80,2	69.73	20	0.022
0:15:00	66,8	65	61,9	65,3	9	e	51,2	64,9	61,5	59,7	24,9	24,8	25						-	10,1	80,19	69,73	20	0,021
0:15:20	66,8	65	61,8	65,3	63	-	51,2	64,9	61,5	59,7	24,9	24,7	24,9						,	09,60	80,19	69,71	20	0,021
0:15:40	66,8 66,8	69	61,9	65,5		N 7	51,2	64,9	61,5	59,7	24,8	24,7	24,9						= ;	09,2	80,15	69,68	20	0,022
0.10.00	0,00	04,0	0 0	00,00	38			04'0	01,4	29,0	74,0	24,1	24,9						-		00, 14	08,07		770,0
0:16:40	00'00 899	64 9 94,9	618 9	65.3 65.3	88		81.1 81.1	64,0 64,8	61.4	29,6 59,6	24,9	24.8	25 25						= =	09.3	80,12 80,12	69.65	20 50	0.024
0:17:00	66,8	64,9	61,8	65,3	63	2	31,1	64,8	61,4	59,6	25	24,9	25,1							109	80,09	69,64	20	0,022
0:17:20	66,8	65	61,9	65,3	63	<u> </u>	31,2	64,9	61,5	59,7	25,1	25	25,1						7	09,3	80,09	69,65	50	0,023
0:17:40	66,7	64,9	61,8	65,2	63	-	51,1	64,8	61,4	59,6	25	24,9	25						=	09,1	80,06	69,59	20	0,025
0:18:00	66,7 66.7	64,9 64.9	61,8 61,8	65,2 65,2	0 0		51,1 51 1	64,8 64.7	61,4 61 4	59,6 50,6	25 25	24,9 24,8	25 25						= =	08,1	80,04 80,04	69,57 69.58	20	0,023
0:18:40	66,6	64,9	61,8	65,2			61	64,7	61,4	59,6	24,8	24,7	24,8						=	09,8	80,02	69,58	20	0,02
0:19:00	66,6	64,8	61,7	65,1	9	e	61	64,7	61,3	59,5	24,7	24,6	24,8						=	09,4	80,02	69,54	50	0,022
0:19:20	66,6 25,6	64,8 51 8	61,7	65,1 65,1	62	ດເ	50,9 21	64,6 e.1.7	61,3 e1 2	59,5 59,5	24,7	24,6	24,8						===	08,9	79,98	69,53 so 40	20	0,026
0. 13.40 průměr	00,00 66.92	04,0 65.05	61.94	65.40	3 63.	26	1 25	64,1 64,94	61.59	59.76	25.14	24,99	25.18	324.1	365.0	2699	3 28 6	57 53 99	1030 10	10, 1 19 54	80.21	69.75	20.00	0,0221
Piritine in the second	12,22	>>>>>>	- > - > - >		; - >	2	24	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>	1	22,44				-		· · · · ·			- 4	>		- 112.2